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ABSTRACT 

Motion planning is an important challenge in robotics research. Efficient generation of 

collision-free motion is a fundamental capability necessary for autonomous robots. 

In this dissertation, a fast and practical algorithm for moving a convex polygonal robot 

among a set of polygonal obstacles with translations and rotations is presented. The running 

time is O (c ((n + k) N + nlogn)), where c is a parameter controlling the precision of the 

results, n is the total number of obstacle vertices, k is the number of intersections of 

configuration space obstacles, and N is the number of obstacles, decomposed into convex 

objects. This dissertation exploits a simple 3D passage-network to incorporate robot 

rotations as an alternative to complex cell decomposition techniques or building passage 

networks on approximated 3D C-space obstacles. 

A common approach in path planning is to compute the Minkowski difference of a 

polygonal robot model with the polygonal obstacle envirormient. However such a 

configuration space is valid only for a single robot orientation. In this research, multiple 

configuration spaces are computed between the obstacle environment and the robot at 

successive angular orientations spanning 7C. Although the obstacles do not intersect, each 

configuration space may contain intersecting configuration space obstacles (C-space 

obstacles). For each configuration space, the algorithm finds the contour of the intersected C-

space obstacles and the associated passage network by slabbing the collision-free space. The 

individual configuration spaces are then related to one another by a heuristic called "proper 

links" that exploit spatial coherence. Thus, each level is connected to the adjacent levels by 

proper links to construct a 3D network. Dijkstra's algorithm is used to search for the shortest 

path in the 3D network. Finally, the path is projected onto the plane to show the final locus 

of the path. 
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1. INTRODUCTION 

1.1 Background 

Motion planning is a major problem in robotics. The objective is to plan a collision-free 

path for robots moving through a workspace populated with obstacles [1-102]. Efficient gen­

eration of collision-free motion is a fundamental capability necessary for autonomous robots. 

The typical goal is to specify a desired function at a very high level, then allow the robot to 

plan and execute the motion by itself. 

The concept of configuration space, presented by Lozano-Perez in 1983 [54], is widely 

used in motion plarming. A configuration of a robot R is the description of any placement of R 

in the workspace by a set of independent parameters that characterize the position of a refer­

ence point fixed in R. The configuration space is the space of all configurations of R in the 

workspace. The configuration space for planar polygons is three dimensions, while that of 

solid polyhedra is six dimensions, including three translations and three rotations. If the robot 

is a polygon in 9?^, the configuration of the robot is specified by ( x ,  y ,  9), where ( x ,  y) is 

the position of the reference O of the object and 0 is its rotation. If the orientation of the robot 

is fixed, (oc, y) is sufficient to specify the configuration. 

Those regions of the configuration space which are not reachable by the robot are referred 

to as configuration space obstacles (also called C-space obstacles). The complement of the C-

space obstacles in the environment is called free space (FP). Thus, the configuration space 

approach considers the robot as a single point and the obstacles as "expanded fat obstacles". 

The expanded fat obstacles are the configuration space obstacles. Thus, the motion planning 

problem is reduced to moving a single point among the configuration space obstacles as an 

alternative to moving a 2D object among the polygonal obstacles. For example, in Figure l.I 

(a), the obstacles are the dot shaded objects and the robot is a triangular object with reference 
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(a) obstacle environment 

(b) configuration space 

Figure 1.1. Obstacle environment and configuration space 
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point O. This environment can be reduced to Figure l.l (b) where the obstacles are the fat 

shaded objects, C-space obstacles, and the robot has been shrunken to a point O. 

Simply speaking, the motion-planning problem can be stated as follows: 

Given an initial configuration R y and a goal configuration 

R2 of a robot, determine whether there exists a collision-free 

motion trajectory to move the robot from Rj to R2. 

If so, plan such a motion. 

1.2 Overview 

This work is built upon the slabbing method proposed by Ahrikencheikh and Seireg [1], 

which finds an optimal motion for a point among a set of non-overlapping obstacles. Here, we 

extend the slabbing method to the motion planning of a convex polygonal robot with transla­

tions and rotations, which also allows overlapping configuration space obstacles. 

The contour is the boundary of the union of a set of intersected C-space obstacles. Succes­

sive configuration spaces are computed for every 8 radians of angular rotation spanning from 

-k/2 to k/2 . Each 6 is referred to as a rotation interval, and the successive configuration 

spaces are referred to as rotation levels. The remaining orientations are symmetric to the range 

[-71/2, K/2] , and therefore need not be considered. The individual configuration spaces are 

then related to one another by a heuristic called proper rotation link that exploits spatial 

coherence to construct a 3D network. 

The major steps of the algorithm are as follows. 

Begin 

Step 1: Find the contour of the intersected C-space obstacles. 

Step 2: Find the associated passage network for each rotation level. 

Step 3: Connect each rotation level to construct a 3D network. 
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Step 4: Search for the shortest path in the 3D network. 

End 

This algorithm has been fully implemented and the experimental results show that it is 

more robust and faster than other approaches. 

1.3 Organization of Tliis Study 

The following sections are organized as follows. Chapter 2 gives a literature review. 

Chapter 3 introduces the data structures used by the algorithm. Chapter 4 presents the algo­

rithm for finding the contour of the intersected C-space obstacles and the algorithm for slab­

bing FP. Chapter 5 describes and analyzes the algorithm for constructing the 3D passage 

network. Chapter 6 gives implementation results and conclusions. 
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2. LITERATURE REVIEW 

There are several methods that have been investigated in the past, which build on the con­

figuration space approach, to find a path. Some of these are reviewed in the following sec­

tions. 

2.1 Hierarchical Approximate Cell Decomposition Approach 

Hierarchical approximate cell decomposition is one of the most popular approach to path 

plarming [5], [9], [20], [21], [27], [41], [42], [70], [102]. It can deal with both translations and 

rotations. The concept of this approach is very simple. Configuration space is divided into 

rectangloid cells with edges parallel to the axes of the space. Cells are labeled as EMPTY or 

FULL depending on whether they lie entirely outside or entirely inside the C-space obstacles. 

Those ceils being partially inside the configuration obstacle are labeled as MIXED. A 2-D 

example is shown in Figure 2.1. At each level of approximation, a search algorithm is used to 

find a set of EMPTY rectangloid cells connecting the initial and goal configurations. If such 

EMPTY set cannot be found, some MIXED cells are subdivided into smaller cells, and then 

are labeled as EMPTY, ETJLL, or MIXED. Another search for a sequence of EMPTY cells is 

executed again. This iterative process ends when a path is found or no path can be found 

through the EMPTY cells of greater than the prespecified size. 

D. Zhu and J.-C. Latombe speed the algorithm by using bounding and bounded approach 

to decompose MIXED cells which generates a much smaller MIXED area and a larger 

EMPTY/FULL area [102]. M. Barbehenn and S. Hutchinson improve the algorithm by using 

a dynamically maintained single-source shortest path tree which is based on the idea that the 

cormectivity graph changes slightly at each iteration [5]. 
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Figure 2.1. 2D cell decomposition 

2.2 Voronoi Diagram Approach 

Some researchers approach motion planning problems with a Voronoi diagram [4], [14], 

[25], [39], [52], [62], [63], [64], [71], [75], [76], [78], [89]. The Voronoi diagram approach is 

one of the road map methods. A Road map is a graph of highways, along which it is safe to 

travel, between the obstacles. With such a road map, a motion can be found by moving the 

robot from the start configuration to some nearby highway. Then, the robot follows the map to 

somewhere near the goal configuration and leaves the highway and moves to the goal config­

uration. 

The Voronoi diagram approach is usually used in planning a high-clearance motion. 

Voronoi diagrams partition the plane into several regions. Those regions are called Voronoi 

cells. Each cell associates with one unique closest point or object of a given obstacle set S, so 

the Voronoi diagram is the locus which are equidistant to at least two obstacles. The vertices 

of the diagram, which are equidistant to more than two obstacles, are called Voronoi vertices. 
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Voronoi diagrams have many applications, for example, in the field of robotics, computer 

graphics, motion planning, biology, and geography and so on. 

The retraction method is used with the Voronoi diagram approach. The term retraction 

corresponds to a continuous map from a topological space X to a subset A of X such that every 

point of A is mapped onto itself and every point in X - A is mapped onto some point in A [60]. 

After the configurations /?i and Rj of the robot are given, a retraction of Ri and /?2 onto con­

figurations /?j' and on the Voronoi diagram can be computed. If /?j' and are con­

nected by some path entirely on the Voronoi diagram, the robot can move from Ri to /?2-

Different kinds of Voronoi diagrams are reviewed in the following sections. 

2.2.1 Standard Voronoi diagram 

If the obstacles are points in a plane, the standard Voronoi diagram of those points parti­

tions the plane into several convex polygonal regions (see Figure 2.2 (a)). Given two points, /?,• 

and pj, the set of points closer to p, than to pj is the half-plane containing pi that is defined by 

the perpendicular bisector of p^p j . Let us denote this half-plane by H(pi, pj). The points closer 

to Pi than to any other point, which is denoted by V(/), is the intersection of AT - 1 half-planes. 

That is 

V(0= nH{p . ,p j ) .  
i 

V{i) is called the Voronoi polygon associated with pi. The line segments are called Voronoi 

edges. The Voronoi diagram of a set of N points in the plane can be constructed in 

O (NlogN) time [68]. After the Voronoi diagram is computed, the robot can trace the Voronoi 

edges to produce a high-clearance path. 
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(a) obstacles are points 

(b) moving object is a disc 

Figure 2.2. Voronoi Diagram 
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(c) moving object is a polygon 

Figure 2.2. (continued) 

2.2.2 Moving object is a disc and obstacles are polygons 

When the moving object is a disc, the diagram is the loci of the centers of all maximal cir­

cumscribed circles (also called external skeleton [38]), and the partitions of the plane will be 

smooth curves (see Figure 2.2 (b)). D. Kirkpatrick gives an 0 (nlogn) time algorithm to 

construct the skeleton of arbitrary n-line polygonal figures [38]. Since the moving object is a 

disc and the radius of the disc can be adjusted to touch at least two obstacles, the loci of the 

external skeleton are equidistant to at least two obstacles in the Euclidean metric. This method 

can be combined with the configuration space approach. If a high clearance motion is required 

for moving a polygonal robot, configuration space can be computed first to shrink the robot to 

a point, then find the external skeleton of the configuration space. Thus, if the robot is moved 

along the external skeleton, it will always have the highest clearance to the obstacles. 
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2.2.3 Moving object and obstacles are polygons 

If the moving object and the obstacles are polygons, and we use the convex distance func­

tion mentioned in [52] to define the distance, the Voronoi diagram of those polygons are called 

B-Voronoi diagram, and the partitions of the plane may be concave polygonal regions (see 

Figure 2.2 (c)). D. Leven and M. Sharir give an O (/ilogn) time algorithm to construct a B-

Voronoi diagram for a purely translation motion, where n is the total number of obstacle cor­

ners. More details about the 5-Voronoi diagram are given in the APPENDIX. 

2.2.4 Approximating generalized Voronoi diagram 

J. Vleugels and M. Overmars give an easier algorithm to compute an approximating 

Voronoi diagram [95]. They subdivide the space into primitive cells and test the distance 

between the obstacles and cells. Those cells having the same distance to at least two obstacles 

are on the Voronoi diagram. However, since the testing sequence for these cells is usually 

firom left to right and top to bottom, this approximating algorithm has difficulty finding the 

connectivity relationship of the cells lying on the Voronoi diagram, after all cells are tested. 

2.2.5 lYanslation and rotation 

The Voronoi diagram approach is commonly used to plan translational motion. If the robot 

is allowed to rotate, the problem becomes more complicated. Chew and Kedem have devel­

oped a high-clearance motion for a convex polygonal object moving among polygonal obsta­

cles in the plane, allowing both rotation and translation [14]. This algorithm takes 

(n )  logn j time, where / c  is the number of edges of the moving object and n  is the 

number of comers, and edges of the obstacles and is one of the almost-linear functions 

related to Davenport-Schinzel sequences. They compute the fi-Voronoi diagram in (jf, y, 0) 

space. The Voronoi boundaries will change gradually as 0 changes to generate ruled surfaces. 
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They construct a skeleton which contains all the information necessary to do high-clearance 

motion planning. Then any search technique may be used to find the path. No implementation 

results are reported in their paper. 

2.3 Potential Field Approach 

The potential field method is a completely different approach. The idea is to treat the goal 

configuration as an "attractive" field and the obstacles as a "repelling" field [15], [29], [32], 

[37], [55], [65], [97]. The motion planning is performed by repeatedly computing the most 

promising direction of motion, and moving in this direction by some step size. However, it is 

a very complex task to choose adequate potential functions and there is no guarantee that a 

collision-free path will always be found. 

2.4 Network Representation Approach 

The network representation approach finds adjacency functions between the objects, and 

then uses any search technique to find a collision-free path embedded in the network. 

2.4.1 IVanslation 

T. S. Ku and B. Ravani use a horizontal slicing technique to construct a connectivity graph 

among non-overlapping polygonal objects [43]. Ahrikencheikh et al. also construct a passage 

network by slicing the space [1], [2]. One horizontal slicing and its associated passage net­

work are given in Figure 2.3. Ahrikencheikh et al. construct a passage network to find the 

optimal and conforming motion for a point in a constrained plane. Their algorithm allows 

non-convex but non-overlapping obstacles. Obviously, there are no rotation problems in mov­

ing a point. They first sort all the vertices according to their descending _y-coordinate order. 

Then they slab the FP by the horizontal lines passing through those sorted vertices. The detail 

of the algorithm is given below. 
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(a) horizontal slicing 

(b) passage network 

Figure 2.3. Horizontal slicing and passage network 
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Begin 

Step 1: Sort all vertices according to their y-coordinate where the first vertex in the list 

has the highest y-coordinate. 

Step 2: Initialize the red-black tree to have no edges. 

Step 3: Extract the first vertex of sorted list. 

Step 4: Add to red-black tree all edge(s) where one end point is the selected vertex, 

and other end point has lower y-coordinate. 

Step 5: Delete from red-black tree all edge(s) where one end point is the selected ver­

tex, and the other end point has higher y-coordinate. 

Step 6: Horizontally slice the free space. 

Step 7: If all vertices have been selected then stop; otherwise go to Step 3. 

Step 8: Construct the passage network. 

End 

2.4.2 lYansIation and rotation 

Ahrikencheikh et al. transform the case of a point moving in a 3 D space with stationary 

3D polyhedral obstacles into the problem of a 2D polygon moving among 2D polygonal 

obstacles with translations and rotations. First, they build the 3D polyhedral C-space obstacles 

by computing the 2D C-space obstacles at different critical angles then connect the adjacent 

2D C-space obstacles by 4-edge faces. One orientation subrange [Bp 62] is given in 

Figure 2.4. Actually, this method can only compute an approximate 3D polyhedral C-space 

obstacle, since the boundary of the polyhedron should be ruled surfaces (see Figure 2.5). 

Thus, collisions can still occur if they try to find an optimized path through the edges of the 

polyhedron. Next, they construct the passage-network on the convex edges of the polyhe­

drons. 
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C-space obstacle 

for 02 

C-space obstacle 
for 01 

Figure 2.4. Approximate polyhedral C-space obstacle 

Figure 2.5. Polyhedral C-space obstacle 
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The convex edges are the "gates" of the possible passages. Then, they unfold the faces of 

the polyhedron to construct the shortest path. The algorithm takes O(n^) time to construct an 

optimized path. If there are many obstacles in the environment, this algorithm becomes 

extremely complicated and difficult to implement. 

2.5 Other Approaches 

J. M. Vleugels et al. combine a neural network and deterministic techniques to solve this 

problem [94]. The network represents random configurations of the robot and, from this infor­

mation, constructs a road map of possible motions in the work space. The algorithm con­

structs a network that approximates a Voronoi diagram in configuration space. The only 

information required for this algorithm is whether the robot in a particular configuration inter­

sects an obstacle. It is easily generalized to higher-dimensional configuration spaces, but there 

is no complexity analysis reported. 

M. H. Overmars and P. Svestaka use a probabilistic learning approach to solve motion 

planning [67]. They split the motion planning process into two phases: the learning phase and 

the query phase. In the learning phase they construct a probabilistic roadmap in configuration 

space. This roadmap is a graph where nodes correspond to randomly chosen configurations in 

free space and edges correspond to simple collision-free motions between the nodes. In the 

query phase they use the road map to find paths between different pairs of configurations. This 

method can be applied on free flying robots, planar articulated robots, and car-like robots. 

Lozano-Perez use a slicing technique to find a path within a 0 rotation range [54]. He 

divides the complete range of 0 values into k smaller ranges, approximates the C-space obsta­

cles of those ranges, and then projects them onto the x-y plane. These slice projections are the 

C-space obstacles of the area swept out by the moving object over the range of orientations of 

the slice. Since the swept area under rotation of a polygon is not polygonal, the swept area is 

approximated by the union of polygons. Then, visibility graphs are used to find a path. 
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Because the slice projections are approximations of the C-space obstacles, this algorithm is 

not guaranteed to find a solution. 

H. Martinez-Alfaro uses B-spline and simulated annealing methods to plan collision-free 

paths for robots [56]. He models objects with minimum surrounding area or volume ellipsoid 

shape. A cost function is developed for the simulated armealing algorithm. The algorithm can 

get a smooth path by using B-spIine curves. However, it is slow. 

Takahashi and Schilling used heuristic techniques to find a path for moving a rectangle by 

generalized Voronoi diagrams (GVD) [89]. Two reference points on the mobile object, corre­

sponding to the front and rear wheels of an automobile, trace the shortest GVD path. This 

method is also computationally intensive and it only allows rectangular moving objects. 

2.6 Conclusion 

Some of the algorithms reviewed above are hard to implement when the environment is 

complicated, e.g. Voronoi diagram approach, cell decomposition approach, building passage-

networks on 3D polyhedral C-space obstacles, etc. Some of them can not guarantee the exist­

ence of a path, e.g. potential fields approach. Some of them have high computational com­

plexity, e.g. cell decomposition approach and Voronoi diagram approach. Actually, most 

approaches have their own advantages and disadvantages. Thus, the user needs to choose the 

approach most suitable for the application. 

This study tries to find a fast and easily implementable algorithm to solve the motion plan­

ning problem. This work takes the advantage of 2D cases to solve the 3D cases. This not only 

simplifies the implementation, but also facilitates efficient computation. 
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3. DATA STRUCTURES 

The algorithm requires that no two vertices have the same y-coordinates. Thus, the obsta­

cle environment is assumed to be surrounded by a skewed bounding box. The region outside 

the bounding box is treated as an obstacle. The edges in such a C-space obstacle are ordered 

clockwise. The edges in other C-space obstacles are ordered counterclockwise (see 

Figure 3.1). The Target vertices and target edges are the vertices and edges currently under 

consideration. 

3.1 Edge Information 

The edge information of the C-space obstacles is stored in an array einfo, which contains 

the fields vtop, vbottom, and object. It contains the information corresponding to the edge's 

top vertex, i.e. the vertex with a higher y-coordinate, its bottom vertex, i.e. the vertex with a 

lower y-coordinate, and the object which the edge belongs to, respectively. The information 

for edge j is stored in the y-th entry of array einfo. The declaration of this structure is: 

struct EdgeInfo{ 

int vtop, vbottom', 

int object, 

}. 

The index of an edge vector is the same as the index of its start vertex. The edges in the 

current horizontal slice are stored in eInCurrentSlab. The field of the node in eInCurrentSlab 

containing the index of an edge is referred to as eindex. 

For example, in Figure 3.1, edge 6 is in object 1 and the two end vertices of edge 6 are ver­

tices 6 and 7 and vertex 6 has a higher y-coordinate. Thus, the edge information for edge 6 is: 

einfo[6\.vtop = 5; einfo[6].vbottom = 7; einfo[6\.object = I. 

Similarly, the edge information for edge 22 is: 
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Figure 3.1. Intersected C-space obstacles 

einfo[22].vtop = 23\ einfo[22].bottom = 22; einfo\22].object = 3. 

The information for eInCurrentSlab when the slabbing goes down to vertex 0 is: 

26 <=> 6 <=> 10 <=> 24. 

The information of the three fields in vinfo are obtained before any slabbing. The informa­

tion in eInCurrentSlab are obtained and updated during the slabbing procedure. 

3.2 Vertex Classification 

The vertices in the configuration space are classified into six types. 

1) Up_convex 

A vertex is up_convex if and only if the vertex is convex and its two adjacent vertices 

both have lower _y-coordinates. 

For example, in Figure 3.1, vertices 11 ,0 ,18 ,  and 12  are "up_convex". 
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2) Down_convex 

A vertex is down_convex if and only if the vertex is convex and its two adjacent vertices 

both have higher y-coordinates. 

For example, in Figure 3.1, vertices 9,3,21, and 16 are "down_convex". 

3) Up_concave 

A vertex is upjconcave if and only if the vertex is concave and its two adjacent vertices 

both have higher y-coordinates. 

For example, in Figure 3.1, vertices q, 26, etc. are "up_concave". 

4) Down_concave 

A vertex is down_concave if and only if the vertex is concave and its two adjacent verti­

ces both have lower y-coordinates. 

For example, in Figure 3.1, vertices 24, k, etc. are "down_concave". 

5) Left 

A vertex is left if and only if its front vertex has a lower y-coordinate and its back vertex 

has a higher y-coordinate. 

For example, in Figure 3.1, vertices 6, 7, r, 19, 20, etc. are "left". 

6) Right 

A vertex is right if and only if its front vertex has a higher y-coordinate and its back ver­

tex has a lower y-coordinate. 

For example, in Figure 3.1, vertices 5, 23, 22, j, 10, etc. are "right". 

When the target vertex is on the contour and if it is a "down_concave" or "up_concave" 

vertex, there is no slice going through it. If the contour vertex is "up_convex" or 

"down_convex", there is one slice going from it to its closest right and closest left edges. If the 

contour vertex is "left", there is one slice going from it to its closest left edge. If the contour 

vertex is "right", the slice goes from it to its closest right edge. 
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3.3 Vertex Information 

The algorithm requires that no two vertices have equal y-coordinates, including the verti­

ces of the C-space obstacles and the intersections of the C-space obstacles. The information of 

the vertices, including the vertices in C-space obstacles and the intersections of the C-space 

obstacles, is stored in an array vinfo. Based on the data structure developed by Ahrikencheikh 

and Seireg [1], vinfo contains the fields vfront, vback, vlefi, vright, efront, eback, eleft, and eri-

ght which contain the information corresponding to its front vertex, its back vertex, its left 

vertex, its right vertex, its front edge, its back edge, its left edge, and its right edge, respec­

tively. The "front" and "back" are the relative sequences of the edges or vertices in the C-

space obstacles. The "left" and "right" are the relative positions of the edges or vertices in the 

horizontal slicing. Since the C-space obstacles are the "expanded fat obstacles" of the original 

obstacles, they might overlap although the real obstacles do not overlap. Besides the above 

fields, one more field oncontour is needed, which is a boolean value indicating whether the 

target vertex is on the contour or not. The vertex information for vertex j is stored in the y-th 

entry of the array vinfo. The declaration of the structure is: 

struct Vertexinfo { 

int vfront, vback', 

int vleft, vright; 

int efront, eback', 

int eleft, eright; 

Boolean oncontour, 

} •  

If the vertex does not have right vertex, right edge, left vertex, or left edge, the values of 

the corresponding fields are set to be -1. 

All the vertices in C-space obstacles are sorted by non-increasing ^'-coordinate order and 

their indices are inserted in that order into a linked list ylist. The field of the node in ylist con­



www.manaraa.com

21 

taining the index of a vertex is referred to as vindex. 

For example, in Figure 3.1, the vertex information for vertex 21 is: 

vinfo[2l].yfront = 22; vinfo[2l].vback = 20; 

vinfo[2l].vleft = m; vinfo[2l].vright = n; 

vinfo[2l].efront = 21; vinfo[2l].eback = 20; 

vinfo[2l].eleft = 16; vinfo[2l].eright = 24; 

vinfo{l\].oncontour = TRUE. 

The vertex information for vertex 15 is: 

vinfo[\5\.vfront = 16; vinfo[l5].vback = 14; 

vinfo[\5].vleft = p; vinfo[\5\.vright = -1; 

vinfo\\5\.efront = 15; vinfo[\5'\.eback = 14; 

vinfo[\5].eleft = 26; vinfo[\.5'\.eright = -1; 

vinfo[\5].oncontour = TRUE. 

The information in ylist is: 

24<=>27<=>ll<=>6<=>0<=>l<=>7<=>5<=>18<=>10<=>23c:>12<f^l3<=>2<=>19 

«=> 8 9 <=> 14 <=> 4 <=> 22 <=> 3 <=> 17 <=> 20 o 15 <=> 21 <=> 16 <=> 25 <=> 26 

Only vfront, vback, efront, and eback fields are set before the slicing procedure. The 

remaining fields are determined when the slabbing procedure is processed. 

3.4 Intersection Information 

Since the C-space obstacles might intersect, and the slicing lines intersect some edges, 

each edge needs a linked list ptonEdge to store its intersection information. The first element 

of the list is the highest vertex of the edge, and the last element is its lowest vertex. 

Before slabbing the FP, the intersection information in ptonEdge for each edge has only 

two elements, one is the top vertex of this edge, and the other one is its bottom vertex. For 

example, in Figure 3.1 the intersection information for edge 17 is ptonEdge[\l\. 12 « 17 



www.manaraa.com

22 

and the intersection information for edge 3 is ptonEdge[3]: 4 <=>3. After the slabbing proce­

dure, edge /7 has been determined to have two intersection points, i and j, so the intersection 

information for edge //becomes ptonEdge[ll]: 17. The intersection informa­

tion for edge 3 becomes ptonEdge[3]: 4 <=> ^ <=>y <=> 3. 

3.5 Relative Position of a Vertex to an Edge 

For a given edge E  with top vertex and bottom vertex ( X 2 , y 2 ) . a given vertex 

V  ( x ,  y )  is in the positive x-direction of £ if the cross product 

(x-x2,y-y2) ® (x^-x2,y^-y2) >0.  

Vertex v is in the negative x-direction of this edge if 

{x-x2,y-y2) ® (x^-x2,y^-y2) <0.  

Vertex v is on edge E if 

{x-x2,y-y2) ® ix^-x2,y^-y2) =0.  

For example, in Figure 3.1 if the current slice is the one passing through vertex 19, die 

edges in eInCurrentSlab are 24, 22, 4, 9, 17, 7, 2, 13, and 26. Vertex 19 is in the positive x-

direction of edges 9, 17, 7, 2, 13, and 26, but it is in the negative x-direction of edges 24, 22, 

and 4. 
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4. PASSAGE-NETWORK CONSTRUCTION FOR ONE ROTATION 

LEVEL 

The complement of the area enclosed by the contour in the configuration space is the free 

space. Since the passage network is constructed in the free space, the information of the free 

space should be determined first (see Figure 4.1). In this chapter, algorithms for finding the 

contour of a set of intersected C-space obstacles and constructing the network for a single 

rotation level are given. 

4.1 Methodology Overview 

The passage network construction consists of two major steps: 

Begin 

Step 1: Find the contour and slice the free space; 

Step 2: Construct the passage network for a single level. 

End 

4.1.1 Contour construction 

In this study, the contour of a set of intersected C-space obstacles is constructed by using a 

slabbing technique, which takes O ((n + k) N) time, where n is the total number of obstacle 

vertices, k is the number of intersections, and N is the number of obstacles, decomposed into 

convex objects. The slabbing technique is used instead of Kedem and Sharir's O (nlo^n) 

algorithm [35] (as shown in Figure 4.2), for two reasons. First, the slabbing method is simple, 

as shown by its extensive use in solving geometric intersection problems [61], [66]. Second, 

the passage network construction is based on slabbing, and thus the contour construction can 

be conveniently carried out simultaneously. The second reason is that experiments show that 
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Figure 4.1. The contour and the passage network of Figure 3.1 

Divide and conquer algorithm for calculation of u AT,. (AT,- is the 

C-space obstacle) 

Step 1. Calculate and preprocess all the AT^'s. 

Step 2. Recursively find G = u AT, and H = u , where 
ie g ie h 

g = { 1, ..., \ m / 2 \ }  ,  h  = {|m/2| + 1, . 

Step 3. Find the contour of AT = G u H ,  using the 

Ottmann-Widmeyer-Wood approach [66]. 

Figure 4.2. Kedem and Sharir's Algorithm for constructing a contour. 
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finding the contours with this method takes less than 1% of the total running time. Thus, 

attempting to optimize this step does not pay off. 

Some vertices of the contour are from the C-space obstacles, e.g., vertices 11, 6, 7, etc. in 

Figure 4.1, while others are from the intersections of the C-space obstacles, e.g., vertices j, k, 

etc. The contour may contain several disjoint regions, see, e.g.. Figure 4.3. In order to find all 

contour vertices and their adjacency relations, the edges in eInCurrentSlab, the intersection 

information in ptonEdge, and the vertex information in vinfo need to be updated during the 

slicing. 

4.1.2 Free-space slicing 

The firee space is divided by the horizontal sweeping lines going through the contour verti­

ces to its closest positive and/or negative x-direction obstacle edges. Using the terminology 

used by Ahrikencheikh and Seireg [1], the intersections of the sweeping lines and the obstacle 

edges are called "secondary" vertices. The vertices of C-space obstacles and the intersections 

of the C-space obstacles, which are on the contour, are called "primary" vertices (see 

Figure 4.3). 

Thus, the free-space slicing procedure can be defined as finding the secondary vertices 

associated with their primary vertices. And the gate is the segment corresponding to one pri­

mary vertex and one of its secondary vertices. By the hypothesis that no two vertices have 

equal ^'-coordinates, each slab can have only one, two, three, or four gates (see Figure 4.4). 

The gates are the possible passages for the moving object. 

4.1.3 Network construction for a single level 

The mid-point of the gate is the node of the network. The network is constructed by con­

necting the nodes of adjacent gates together (see Figure 4.1). Such a network is called a "pas­

sage network". The x-y distance of the connected nodes is the weight of the link. 
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Figure 4.3. Primary and secondary vertices 

Figure 4.4. Gates 
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4.2 C-space Obstacle Construction 

The first step of the motion planning algorithm is to find the C-space obstacles. 

Let A I  A f ,  b e  N  convex polygonal obstacles, and let fi be a convex robot. If B is 

rotated around the origin by 180°, it is denoted by (see Figure 4.5). The C-space obstacles 

are obtained by the Minkowski sum of A,- and [26]: 

A -  +  =  { a  +  b \ a  e  A„ b e b' ^ }  ,  i  = l. . .A^.  

The complement of the C-space obstacles is the collision-free configuration space. 

One easier way to compute the C-space obstacles is to view each edge of a polygon as a 

vector directed counterclockwise around the polygon. Then, the edges of A. + B^ are the 

edges in A,- and B^ merged in their slope order (see Figure 4.6). Actually, A. + B^ can also be 

obtained by moving the reference point O of B^ around the boundary of A,- (see Figure 4.7). 

All vertices in the C-space obstacles are sorted according to non-increasing ^-coordinate 

and inserted into the linked list ylist in that order. 

4.3 Edge and Vertex Information Setting 

After the C-space obstacles have been computed, the information for the edges and verti­

ces must be set. Before the slabbing procedure, only vfront, vback, eback, and efront fields of 

vinfo and vtop, vbottom, and object fields of einfo are assigned. The information in elnCur-

rentSlab is empty. The information in ptonEdge for each edge is only its top and bottom verti­

ces as described in Chapter 3. 

All edges and vertices are numbered sequentially. Thus, if the index of the last edge of C-

space obstacle k is /, the first edge of C-space obstacle A:-t-l will be (i+l). The detail of the 

algorithm for setting edge and vertex information is described as follows. 
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Figure 4.5. B and 

Figure 4.6. Merged in slope order 

Figure 4.7. Moves around A,-
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Algorithm Set_E_V_Info 

Begin 

1. n = 0; /* the index of the first target edge and target vertex*/ 

2. for each C-space obstacle c do 

3. for each vertex v in c do 

4. einfo[n].object = c; 

5. vinfo[n].efront = n; 

6. if V is the last vertex of c then 

7. vinfo[n].vfront = the first vertex ofc; 

8. vinfo[n].vback = n - I; 

9. vinfo[n].eback = n -1; 

10. if the >'-coordinate of vertex n < the y-coordinate of the first vertex of c 

11. einfo[n].top - the first vertex of c; 

12. einfo[n].bottom = n; 

13. else 

14. einfo[n].top = n; 

15. einfo[n].bottom = the first vertex of c; 

16. else 

17. vinfo[n].vfront = « + 1; 

18. if the ^'-coordinate of vertex n < the y-coordinate of vertex n+1 then 

19. einfo[n].top = n + I; 

20. einfo[n].bottom = n; 

21. else 

22. einfo[n].top = n; 

23. einfo[n].bottom = n + 1; 

24. if V is the first vertex of c then 
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25. vinfo[n].vback = the last vertex of c; 

vinfo[ri\.eback = the last edge of c; 26. 

27. else 

28. vinfo[n].vback = n -1; 

vinfo[n].eback = n - V, 29. 

30. increment n by 1; 

End 

4.4 Slicing Procedure 

The slicing procedure partitions FP into several triangles or quadrilaterals, each of which 

is referred to as a cell. The boundaries of the cells which do not belong to any C-space obsta­

cles are the gates. There are at most four gates in one cell. The slicing procedure processes the 

elements obtained by merging the vertices of the C-space obstacles with the intersections of 

the C-space obstacles by decreasing y-coordinate. The major steps of this procedure is as fol­

lows. 

Step I. for every vertex v,-, including the vertices in the C-space obstacles and intersec-

End 

4.4.1 Updating information 

The horizontal slicing procedure slices the FP by non-increasing order of the vertices on 

the contour. In what follows, the information that needs to be updated during the slicing is 

described. 

Begin 

tions of the C-space obstacles do 

Step 2. if V,- is on the contour then 

Step 3. slice FP through v,-; 
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4.4.1.1 Updating the edges in the current slab 

For a given target vertex, we examine if there is any edge adjacent to the target vertex and 

below the horizontal line which passes through the target vertex. If so, the edge is inserted into 

eInCurrentSlab. If there is any edge adjacent to the target vertex and above the horizontal line, 

then the edge is deleted from eInCurrentSlab. For example, in Figure 4.8, when the slicing 

procedure goes from vertex 7 to vertex 5, since edge 5 is above the horizontal line, which 

passes through vertex 5, and edge 4 is below the line, edge 5 is deleted from eInCurrentSlab 

and edge 4 is added into eInCurrentSlab. Thus, the information in eInCurrentSlab is updated 

from 24 <=> 26 <=> 10 <=> 5 1 <=> 7 to 24 <=> 26 <=> 10 <=> 1 7 <=> 4. 

4.4.1.2 Updating the intersection information and vertex information 

If the inserted edge intersects any edge currently in eInCurrentSlab, the intersection point 

is inserted into a list intlist ordered by non-increasing y-coordinate. For example, in 

Figure 4.8, when vertex 7 is the target vertex, edge 7 is inserted into eInCurrentSlab, and it is 

determined to intersect with edge / at point a. At this moment intlist has only one element a. 

When vertex 18 is the target vertex, edges 18 and 23 are inserted into eInCurrentSlab. Edge 

23 is intersected with edge 4 at point b, so point b is inserted into intlist. Since point b has a 

higher y-coordinate, the information in intlist becomes b<^a. Once the intersection vertex in 

intlist has been the target vertex, this element is deleted from intlist. If an intersection point is 

on the contour, FP will be sliced through this intersection point, e.g., points r and j in 

Figure 4.10. The intersection information ptonEdge of the two intersected edges and the ver­

tex information vinfo about the vertices on the two edges will be updated. 

If the intersection point is not on the contour, there is no need to update this information. 

Four intersection cases are shown in Figure 4.9. The bold segments in Figure 4.9 are the por­

tions on the boundaries of the contour in which the intersection point is on the contour. For 

case 1 (resp. case 3) of Figure 4.9, there will be a slice that goes from the intersection point to 
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Figure 4.10. Intersected C-space obstacles 

the closest right (resp. left) edge. Case 2 and case 4 are degenerate cases with no slicing, since 

the intersection vertex is concave. 

For example, in Figure 4.10, when the slicing procedure goes down to vertex 4, edge 3 is 

inserted into eInCurrentSlab and edge 4 is deleted from eInCurrentSlab. Edge 3 is tested for 

intersection with edges 19 and 17 at k and j respectively in the current slab, so k and j are 

stored in intlist. When the slabbing procedure goes down to point k, point k is tested to deter­

mine if it is on the contour. Since point k is on the contour, it is now necessary to determine 

what kind of intersection it is, and it is found to be a case 2 intersection. Thus, there is no slice 

passing through point k. The front vertex of vertex 3 is then updated from vertex 4 to vertex k, 

the back vertex of vertex k is 3, the front vertex of k is 20, and the back vertex of 20 is updated 

from 19 to k.  The intersect ion information for  edge 3 becomes ptonEdge[3]:  4 <=>^<=>3. 

After vertex k has been the target vertex, it is deleted from intlist. 
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When the slabbing procedure goes down to point j, point j is tested to determine if it is on 

the contour. Since point j is on the contour and it is a case 1 intersection, there is a slice from 

vertex j to its closest right edge 19. The front vertex of 17 becomes j, the back vertex of j is 17, 

the front vertex of j is k, and the back vertex of k is updated from 3 to j. The intersection infor­

mation for edge 3 becomes ptonEdge[3]: 4 ^ kc^j <=>3. Updating all the information for 

one target vertex takes only constant time. 

4.4.2 Contour finding 

Since the C-space obstacles are convex "closed loops", each C-space obstacle in the cur­

rent slab contributes two edges to eInCurrentSlab. For example, in Figure 4.10, when the slic­

ing procedure goes to vertex 19, the objects in the current slab are objects 0, 1, 2, and 3, and 

the edges in eInCurrentSlab are 24 <=> 26 <=> 4  «=> 7  o  9 <=> 22 o  17 <=> 13 <=> 2  <=> 19.  

Edges 24 and 26 are from the bounding box, edges 4 and 2 are from object 0, edges 7 and 9 

are from object /, edges 17 and 13 are from object 2, and edges 19 and 22 are from object 3. 

Thus, if there are objects, there are at most 2A^ edges in eInCurrentSlab. 

For a given target vertex in ylist or intlist, and two given edges in eInCurrentSlab which 

belong to the same C-space obstacle (9,-. If the target vertex is in the positive jc-direction of 

both edges or in the negative jc-direction of both edges, this vertex is outside of O,-. On the 

other hand, if the target vertex is in the positive x-direction of one edge and in the negative x-

direction of another edge, this vertex is inside O,-, and thus it is not on the contour. 

For example, in Figure 4.10, vertex 79 is in the positive x-direction of edges 7 and 9, so it 

is outside of object 1. However, vertex 19 is in the positive x-direction of edge 2, but it is in 

the negative jc-direction of edge 4, so vertex 19 is inside object 0. Since vertex 19 is inside 

some object, it is not on the contour. 

The major steps for testing whether a vertex is on the contour are described as follows. 
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Begin 

Step 1. mark the target vertex as "on the contour"; 

Step 2. for every pair of edges e,- and ej in eInCurrentSlab which belong 

to the same C-obstacle do 

Step 3. if the target vertex is in the different x-direction of e,- and ej then 

Step 4. mark the target vertex as "not on the contour"; 

End 

4.4.2.1 Detail of the contour finding algorithm 

If the target vertex is outside of the C-space obstacle of the bounding box, the target venex 

is not on the contour either. If the target vertex is on the contour, we need to find its closest 

edges for later slicing. The closest edges can be found by the same procedure. 

If the target vertex is in the positive x-direction of edge E and edge E belongs to object /, 

set obstacle {i\ = P. If the target vertex is in the negative jc-direction of edge E, set 

obstacle [/] = A^. If the target vertex is neither in the positive nor in the negative x-direction 

of E, it lies on the edge. In the next section, there is more discussion about the situation where 

the target vertex lies on some edge. 

Procedure isonContour determines whether the target vertex is on the contour and com­

putes the closest right and left edges of the target vertex. If the target vertex is not on the con­

tour, its closest right and left edges are set to be -1. Procedure isonContour tests all vertices, 

including the vertices on the C-space obstacles and the intersections of the C-space obstacles. 

Procedure isOnContour 

Input: the index of the target vertex, target_vertex\ 

Begin 

1. vinfo[target_vertex].oncontour = TRUE; 

2. if target_vertex is outside of the C-space obstacle of the bounding box then 
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3. vinfo[target_vertex] .oncontour = FALSE; 

4. stop; 

5. for every edge e,- in eInCurrentSlab do 

6. if (e,- does not belong to the bounding box) and (target_vertex is not the end vertex of 

e,-) and (if target_vertex is an intersection of two edges, e,- is not one of the edges) 

then 

7. which_obj = einfo[e ̂ .object', 

8. if target_vertex is in the positive x-direction of e,- then 

9. if obstacle[which_obj] = M then 

10. vinfo[target_vertex].oncontour = FAiLSE; 

11. closest right edge of target_vertex = -1; 

12. closest left edge of target_vertex = -1; 

13. stop; 

14. else obstacle[which_obj] = f; 

15. update the closest left edge of target_vertex\ 

16. else if target_vertex is in the negative x-direction of e,- then 

17. if obstacle[which_obj] — P then 

18. vinfo[target_vertex].oncontour = FALSE; 

19. closest right edge of target_vertex = -1; 

20. closest left edge of target_vertex = -1; 

21. stop; 

22. else obstacle[which_obj\ = N', 

23. update the right closest edge of target_vertex; 

24. else /* target_vertex is on e,- */ 

25. onedge = e,-; 

End; 
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Procedure isonContour takes 0{N) time in the worst case to process a target vertex. After 

the procedure, those vertices whose oncontour fields are TRUE are the vertices on the con­

tour, and they are the "primary" vertices mentioned earlier. The closest right (resp. left) vertex 

for a left (resp. right) primary vertex is set to be - I. If the target vertex is found to be on the 

contour, FP will be sliced by a horizontal line passing through that vertex to its closest left 

and/or closest right edge(s) according to the vertex type. 

4.4.2.2 Contour vertex Ivine on some edge 

If the contour vertex lies on some edge, it might change the type and the closest right and/ 

or left edge(s) of this vertex. Since we assume that no two vertices have the same ^'-coordi-

nates, when we consider that the vertex lies on some edge, we cannot have the following 

cases: for one primary vertex, it cannot lie on the end vertex of another edge, as shown in 

Figure 4.11 (a). The situation is the same for the intersection point (see Figure 4.11 (b)). By 

assumption, there is no edge going through the intersection point. If the intersection point lies 

on another edge, then two or more intersection points overlap (see Figure 4.11 (c)). 

Here, s denotes the start point of the edge on which the target vertex lies, and a is its end 

point. The target vertex is denoted by t, its back vertex by b, and its front vertex by c (see 

Figure 4.12). Different types of vertices lead to different kinds of situations when the vertex 

lies on another edge. 

1)Up_convex 

If the target is "up_convex", and it lies on some edges, it will be one of the six cases as 

described in Figure 4.12. 

Case (1) and case (2): 

If 5a X > 0 and s a x s o Q ,  this is case (1) or case (2). 

Since the edges of the objects are ordered counterclockwise, even if t  lies on edge s a , t  i s  

still counted as inside the object which owns sa. Thus, vertex t is not on the contour, so its 
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(a) two primary vertices (b) one primary vertex and (c) three intersections 

one intersection 

Figure 4.11. Overlapping vertices 

closest right and left edges are reset to -1. 

Case (3): 

If 5a X < 0, s a x s c < 0 ,  and vertex c is in the positive ;c-direction of edge sa, it is case 

(3). 

Since the edges of the objects are ordered counterclockwise, even if t  lies on edge s a ,  t  i s  still 

counted as outside the object which owns sa. Thus, vertex t is on the contour, and its closest 

left edge is updated to edge sa, and its closest right edge is still the one obtained from Proce­

dure isOnContour. In this case, the distance between the target vertex t and its closest left edge 

is 0. 
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(I)  <2) 

(3) (4)  

<5) <6) 

Case (4): 

Figure 4.12. Up_convex 

I f  s a x  s b  < 0 ,  s a x  s c  < 0 ,  and vertex c is in the negative j:-direction of edge sa, it is case 

(4). 

In Case (4), vertex t is on the contour as it was in Case (3), except its closest right edge is 

updated to edge sa, and its closest left edge is still the one obtained from Procedure isOnCon-

tour. The distance between the target vertex t and its closest right edge is 0. 
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Case (5): 

If ja X jfc > 0 and jo x jc < 0, it is case (5). 

Since the objects are ordered counterclockwise, in this case, vertex b is inside the object 

which owns sa, and vertex c is outside that object. The type of vertex t is updated from 

"up_convex" to "left". Thus, its closest right edge is set to -1. The back vertex of t is updated 

from b to s, vinfo[i\.vback = s. The front vertex of s is updated from a to t, vinfo[s].vfront = t. 

Case (6): 

If ja X 5^7 < 0 and x > 0, it is case (6). 

Similarly to case (5), in this case the type of vertex t is updated from "up_convex" to 

"right". Thus, its closest left edge is set to -1. The front vertex of t is updated from c to a, 

vinfo[i\.vfront = a. The back vertex of a is updated from s to t, vinfo[a].vback = t. 

2) Down_convex 

If the target is "down_convex", and it lies on some edges, there are also six cases as 

described in Figure 4.13. 

Case (1): 

I f  s a x  s b < 0 ,  s a x  s c < 0 ,  and vertex c is in the positive jr-direction of edge sa, it is case (1). 

Since the edges of the obstacles are ordered counterclockwise, even if t lies on edge sa, t is 

still counted as outside the object which owns sa. Thus, vertex t is on the contour, and its clos­

est left edge is updated to edge sa. 

Case (2): 

If 5a X < 0, 5a X jc < 0, and vertex c is in the negative x-direction of edge sa, it is case 

(2). 

In Case (2), vertex t is on the contour as it was in Case (1), except its closest right edge is 

updated to edge sa. 
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a) (E) 

(3)  C4) 

S\ a 
b .  \  c  b  A C  

(5) C6) 

Figure 4.13. Down_convex 

Case (3) and case (4): 

If 5a X > 0 and s a x s o O ,  this is case (3) or case (4). 

In the two cases, t is counted as inside the object which owns sa. Thus, vertex t is not on 

the contour, so its closest right and left edges are reset to -1. 
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Case (5): 

If ja X < 0 and 5a x jc > 0, it is case (5). 

In this case, the type of vertex t is updated from "down_convex" to "left". Its closest right 

edge is reset to be - I. The front vertex of t is updated from c to a, vinfo[t\.vfront = a. The back 

vertex of a is updated from s to t, vinfo{d\.vback = t. 

Case (6): 

If 5a X > 0 and ja x jc < 0, it is case (6). 

In this case, the type of vertex t is updated from "down_convex" to "right". Its closest left 

edge is set to -1. The back vertex of t is updated from b to s, vinfo[t].vback = s. The front ver­

tex of s is updated from a to t, vinfo[s].vfront = t. 

3) Left 

If the target vertex is "left", and it lies on some edges, there are also six cases as described 

in Figure 4.14. 

Case (1): 

If  X56 <0 and ja  x5c < 0,  i t  is  case (1) .  

In this case, the closest left edge of t is reset to be sa. 

Case (2): 

If s a x s b > 0  and .ya x 50 0, it is case (2). 

In this case, vertex t is determined to be inside the object which owns edge sa. Thus, its 

closest left and right edges are reset to -1. 

Case(3): 

If 5 0  x < 0 ,  5 a  X  5 c >  0 , and the y -coordinate of vertex / is higher than the y -coordinate 

of vertex a, it is case (3). 

In this case, the front vertex of t is updated from c to a, vinfo[t].vfront = a. The back vertex 

of a is updated from s to t, vinfo[a].vback = t. 
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/to 
s. b 

CD CE) 

(3)  <4) 

C5) (6) 

Case (4): 

Figure 4.14. Left 

If ja X < 0, X 5c > 0, and the _y-coordinate of vertex t is lower than the _y-coordinate 

of vertex a, it is case (4). 

In this case, the type of vertex t is updated from "left" to "up_concave". Thus, its closest 

left and right edges are updated to -1. The front vertex of t is updated from c to a. 
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vinfo[t].yfront = a. The back vertex of a is updated from s to t, vinfo[a\.vback = t. 

Case (5); 

If jfl X > 0, 5a X jc < 0, and the 3;-coordinate of vertex t is higher than the ^'-coordinate 

of vertex s, it is case (5). 

In this case, the type of vertex t is updated from "left" to "down_concave". Thus, its clos­

est left and right edges are updated to -1. The back vertex of t is updated from b to s, 

vinfo[t\.vback = s. The front vertex of s is updated from a to t, vinfo[s].vfront = t. 

Case (6); 

If X 5Z7 > 0, 5a X 5c < 0, and the y-coordinate of vertex t is lower than the _y-coordinate 

of vertex s, it is case (6). 

The back vertex of t is updated from b to s, vinfo[t].vback = s. The front vertex of s is 

updated from a to t, vinfo[s].vfront = t. 

4) Right 

If the target vertex is "right", and it lies on some edges, there are also six cases as 

described in Figure 4.15. 

Case(l) :  

If ja X5fe >0 and 5a x5c> 0, it is case (1). 

In this case, vertex t is determined to be inside the object which owns edge sa. Thus, its clos­

est right and left edges are set to -1. 

Case (2): 

If 50 x 5Z7 < 0 and 5a x 5c < 0, it is case (2). 

In this case, the closest right edge of t is reset to be sa. 

Case(3): 

If  5a X 5& < 0 , 5a X 5c> 0,  and the y-coordinate of  vertex t is higher than the y-coordinate 

of vertex a, it is case (3). 
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(1) (2) 

c c 

C3) (4)  

<5) (6)  

Figure 4.15. Right 

In this case, the type of vertex t is updated from "right" to "down_concave". Thus, its clos­

est right and left edges are updated to -1. The front vertex of t is updated from c to a, 

vinfo[t\.vfront = a. The back vertex of a is updated from s to t, vinfo[a].vback = t. 

Case (4): 

If 5a X < 0, 5a X 5c > 0, and the y-coordinate of vertex t is lower than the _y-coordinate 
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of vertex a, it is case (4). 

In this case, the front vertex of t is updated from c to a, vinfo[t\.vfront = a. The back vertex 

of a is updated from s to t, vinfo[a].vback = t. 

Case (5): 

If ja X > 0, jct X 5c < 0, and the y-coordinate of vertex t is higher than the _y-coordinate 

of vertex s, it is case (5). 

The back vertex of t is updated from b to s, vmfo[t\.vback = s. The front vertex of s is 

updated from a to t, vinfo[s].vfront = t. 

Case (6): 

If ja X > 0, 5a X jrc < 0, and the y-coordinate of vertex t is lower than the y-coordinate 

of vertex s, it is case (6). 

In this case, the type of vertex t is updated from "left" to "up_concave". Thus, its closest 

right and left edges are updated to -1. The back vertex of t is updated from b to s, 

vinfo[t].vback = s. The front vertex of s is updated from a to t, vinfo[s].vfront = t. 

4.4.3 Plane graph 

Recall that when the target vertex is on the contour and if it is a "down_concave" or 

"up_concave" vertex, there is no slice going through it. If the target vertex is "up_convex" or 

"down_convex", there is one slice going from it to its closest right and closest left edges. If the 

target vertex is "left", there is one slice going from it to its closest left edge. If the target vertex 

is "right", the slice goes from it to its closest right edge. 

The graph that describes the adjacency information of the slicing is called plane graph 

(see Figure 4.16). 

The intersection information and vertex information must also be updated when one slic­

ing line intersects with one edge. For example, after the slicing procedure, the edge informa­

tion for edge CQ in Figure 4.16 is: 
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e3 0 

12, 

el4 1̂3 
ell 14 e2 

10 
el 

Figure 4.16. Plane-graph 

ptonEdgeleg]: 0<=>1<=»2<=»3«: :>4<=>5<=>6<=>7<=>8<=>9<=>10.  

The vertex information for vertex 11 is: 

vinfo[ll].vfront = 13; vinfo[ll].vback = 14; 

vinfo[ll].efront = ejj; vinfo[ll].eback = 

vinfo[ll].eleft = ej; vinfo[ll].eright = eg; 

vinfo[ll].vleft = 12; vinfo[ll].vright = 5. 
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4.4.4 Detail of the slicing algorithm 

This section gives more detail about the slicing algorithm. Procedure ContourSlice 

describes the information update when a slice going through a contour vertex. 

Procedure ContourSlice 

Input: target_vertex'. 

Begin 

1. if target_vertex is an intersection point then 

2. Update the intersection information (the information in pionEdge) for the two 

edges, which intersect at target_vertex, according to the intersection cases (see 

Figure 4.9); 

3. Update the vertex information (front and back information) for target_vertex and 

its neighbors; 

4. Draw a horizontal line passing through target_vertex to its closest left and (or) right 

edge(s) according to the vertex type of target_vertex\ 

5. Update the intersection information (the information in ptonEdge) of target_vertex's 

closest edge(s), which the slicing line intersects with; 

6. Update the vertex information (left and right information) for target_vertex and the 

intersection(s) of the slicing line and target_venex's closest edge(s). 

End 

Since each update just takes constant time, procedure ContourSlice takes constant time. 

The slabbing procedure proceeds according to non-increasing y-coordinate order of the 

merge of ylist and intlist. The whole horizontal slicing procedure is described as follows. 

Procedure Hslice 

Begin 

1. for every vertex v,- in ylist do 
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2. if any edge adjacent to v,- is below the horizontal line, which passes through v,- then 

3. insert the edge into eInCurrentSlab; 

4. if there are intersections between the inserted edge and the edges in 

eInCurrentSlab then 

5. insert the intersections into intlisf, 

6. if any edge adjacent to v,- is above the horizontal line, which passes through v,- then 

7. delete the edge from eInCurrentSlab-, 

8. While {intlist ^ 0 and the y-coord. of the first element fvint of intlist is >= the y-

coord. of V,) do 

9. if isOnContour(/v//zO then 

10. ContourSIice(/vmO; 

11. Delete fvint from intUsf, 

12. if isOnContour(v,) then 

13. ContourSIice(v,); 

End; 

If the C-space obstacles do not intersect, the edges in eInCurrentSlab can be stored in a 

red-black tree structure to save computational time [1]. However, the edges in eInCurrentSlab 

may intersect, so they are just stored in a linked list here. Step 3 takes constant time to insert 

an edge but step 7 takes 0{N) time to delete an edge, so the total execution time for step 7 is 

O {nN) , since step 1 is repeated n times. It takes 0{N) time to find the intersections between 

each inserted edge and the edges in eInCurrentSlab. If there are any intersections, they are 

inserted into intlist by non-increasing _y-coordinate. Since the total number of intersections is 

k, there will be 0{k) elements in intlist at any time. If the elements in intlist are stored in a red-

black tree, step 5 will take 0(log/:) time for each insertion, for a total of (9(A:logit) time. 

Because k is bounded by N', this is 0{k\o%N). Steps 9 and 10 take a total of 0(JcN) time. Step 
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11 takes Oik logN)  time. Steps 12 and 13 take 0{nN) time. Summing up all the time bounds, 

we see that procedure Hslice takes 0{{n+k)N) time. 

4.5 Network Construction for a Single Level 

The passage network for one orientation is constructed by connecting the mid-points of 

the adjacent gates, which are the nodes of the network, as described by Ahrikencheikh and 

Seireg [1]. 

The network construction procedure for a single level is called NetworkperLevel. Unlike 

the Ahrikencheikh and Seireg algorithm, we have no extra slices passing through the start and 

goal configurations. Instead, the start and goal configurations are connected to the nodes of the 

cell in which they are located (see Figure 4.1). 

The major steps for this procedure are: 

Begin 

Step 1: Create the nodes of the passage network; 

Step 2: Connect the nodes of the adjacent gates to each other; 

End 

4.5.1 Data structures 

The nodes of the network are stored in an array netnode[i]\j], where i is the level of this 

node, and j is the index of this node at level i. The data structure is: 

struct Net{ 

int color, 

int vleft, vright; 

int nodeid\ 

int levet, 

int motion; 
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float dist\ 

Net* parent', 

Netlist* next-, 

} •  

The field color is a flag to indicate if this node has been searched or not while we do the 

network searching. If color is 0, that means it is still unsearched. If color is 1, that means it has 

been searched. The fields vleft and vright are the left and right vertices of this node. The field 

nodeid is the index of this node in array netnode, which is the same as the index of the right 

vertex, stored in vinfo, of this node. The field level is the rotation level of this orientation in 

3D network. The field motion indicates the motion of this robot, 1 meaning the motion of this 

robot from the target node to its parent node is translation first then rotation, and 0 meaning 

rotation first then translation. The field dist stores the distance between this node and the 

source node, and the initial value of dist for each node is -1. The field parent stores the parent 

node of the target node. Each node has only one parent, so after the network searching, we can 

just follow the parent pointers to find the final route. The pointer next is a linked list with 

Netlisi data type that stores all adjacent nodes of this target node. The target node is called 

center node with respect to its adjacent nodes. The data structure for the linked list Netlist is: 

struct Netlist { 

int nodeid', 

int level, 

int motion; 

float weight; 

Netlist* next; 

} •  

The field nodeid is the index of this adjacent node. The field level is the level of this node. 

The field motion indicates the motion of this robot, 1 meaning the motion of this robot from 
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the center node to this adjacent node is translation first then rotation, and 0 meaning rotation 

first then translation. If the two nodes are at the same rotation level, then the field motion is 

ignored. This will be described in more detail in the next chapter. The field weight stores the 

distance between the center node and its adjacent node. The pointer next points to the next 

adjacent node of the center node. 

Figure 4.17 shows the relationship between the node and its adjacent nodes, where ptrl to 

ptm are the adjacent nodes of node netnode[i][j]. The upper half of the box is the data type of 

the node. For example, in Figure 4.18, suppose the parent of node /i; of level / is node of 

level /-I, and the distance between node nj of level i to the source node is 93.5, and node «/ of 

level i has been searched, then information for node of level i is: 

netnode[i][l].color = 1; netnode[i][l].vleft = 4\ 

netnode[i][l].right = 1; netnode[i][l].nodeid = 1; 

netnode[i][{].level = /; netnode[i][l].motion = 0; 

netnode[i][l].dist = 93.5; netnode[i][l]->parent = netnode{i-\][y\. 

The pointer next points to a linked list with a Netlist data type which stores the adjacent 

nodes of netnode[i][]\. Since node of level i has six adjacent nodes, its next field is: 

Net 

ne-tnodeCiJC J] 

(center node) 

next  

Netlist 

ptrl 

Netlist 

ptr2 

(adjacent nodes) 

Netlist 

ptrn 

Figure 4.17. Netlist 
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Level i+1 

VI 

V4 

Level 

Level i— 1 

Figure 4.18. Three adjacent levels 

netnode[i\[\]->next = ptr[->ptr2->... ->ptr6. 

The nodes from ptr\ to ptr6 are with Netlist data type. Suppose ptr\ is node /jj of level 

/+1, and the distance between node nj of level Z+l and node rij of level i is 10.3, the informa­

tion for ptr\ is: 

ptrlModeid = 3; ptrl.level = /+I; 

ptrl.motion = 0; ptrl.weight = 10.3; 
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ptr\->next = ptrl'. 

Similar data structures are for nodes ptrl to ptm. 

4.5.2 Network construction 

Since we construct the network for each single level first, some fields in netnode are not 

set until the whole 3D network is constructed. 

For both primary and secondary vertices, those with left vertices (or right vertices) must 

have an associated gate. The vertices that have no left vertices (or right vertices) are the 

down_concave vertices, or up_concave vertices, so they do not have associated gates. We 

chose to find the network nodes by scanning vertices that are left vertices. 

The network construction for one single level is described as follows. 

Procedure NetworkperLevel 

Begin 

1. for every vertex i (including primary and secondary vertices) in level Iv do 

2. if vertex i has a left vertex vlft then /* create the nodes of the network */ 

3. node i of level Iv = the mid-point of vertex i and vertex vlft-, 

4. netnode[lv][i\.color = 0; netnode[lv][i].level = Iv; 

5. netnode[lv][i].nodeid = /; netnode[lv][i\.parent = NULL; 

6. netnode[lv][i\.vleft = vlft; netnode[lv][i].vright = i; 

1. netnode[lv\{i].dist = -1; /* initial value */ 

8. for every node nd in level Iv do 

9. find every adjacent node adjnd of nd do 

10. create a pointer ptr with Net list data type; 

11. ptr->nodeid = adjnd; ptr->level = Iv; 

12. ptr->weight = the distance between adjnd and nd; 

13. insert pointer ptr into the linked list pointed by netnode[lv][i\->next; 
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End 

Since all C-space obstacles are closed convex sets, there are only 0{N)  non-convex cor­

ners on the contour [78]. That is, there are 0{N) intersections on the contour. Hence, the total 

number of vertices on the boundaries of the contour is (9(n). Thus, procedure Networkper-

Level only takes 0{n) time, since it simply goes through the vertices of the contour and con­

nects the adjacent nodes into a network. In Figure 4.1, the passage network is shown with bold 

links; the dark circles are the nodes of the network. 
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5. 3D PASSAGE NETWORK CONSTRUCTION 

The shape of the C-space obstacles changes with the rotation angle of the moving object. 

Figure 5.1 shows three configuration spaces in three different robot orientations. Since the 

robot has been shrunken to a point, the dotted triangle in Figure 5.1 is included to indicate the 

orientations of the robot. When the robot is at 0° orientation, the C-space obstacles are dis­

joint. However, when the robot rotates 45°, some of the C-space obstacles overlap. When the 

robot rotates 90°, the overlapped C-space obstacles separate again. Our approach is to con­

struct snapshots of the rotation levels for different rotation angles, and to link the levels via 

proper rotation links. 

In the previous chapter, we have shown how to construct the network for a single rotation 

level. This chapter will describe how to connect those 2D networks into a 3D network and 

find a motion path for the robot. The major steps of this algorithm are given below. 

Begin 

Step 1: Connect the nodes in each level to the nodes of the adjacent levels by the proper 

rotation links. /* construct the 3D network */ 

Step 2: Search for the shortest path in the 3D network. 

Step 3: Project the shortest path onto x-y plane. 

End 

5.1 Proper Rotation Links 

If the reference point of the robot is placed at point Pj at orientation 0, the position of the 

robot is denoted as Pj (0) . The free space for a given 0 is denoted by FP (Q) . We separate 

the motions of translation and rotation. Thus, if the robot rotates from 0, to 0^, its reference 

is fixed at the same point. This is denoted by P, (0|) P—> P^ (G2) , where Pi is the locat-
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Figure 5.1. Multiple configuration spaces 

ion of the reference point. The purely translational motion from Pj to P2 at level 0-, is denoted 

as P, (Bj) T-^ P2 (69). If the robot rotates from 9, to 02 at position P, then translates 

to Pj, the motion is denoted as P, (0,) R-^P^ (B,) r-> P2(02) • If the motion is 

reversible, the symbol" <-> " is used. 

Given adjacent levels 0j and 02, if the orientation interval is small enough, and suppos­

ing P is in both FP (0j) and FP (0^) from the top view, then the robot will have a collision 
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free motion PCG,) P (02)- However, if P is in FP(0,) but not in FPCGj), that 

means after the robot rotates from 0 j to ©2, position P will be inside some C-space obstacle. 

Thus, there will be collision if the robot has a motion /"(Oj) —> R—> P (02). 

Figure 5.2 shows two adjacent rotation levels 0. and 0^.,^ j. If the two levels are projected 

onto the x-y plane. Pi is determined to be in the collision-free cell V1V2V3V4 of level 0^.^ , (see 

Figure 5.2 (b)). This means that if the robot is placed at Pj, it will have a collision-free rota­

tion from 0. to 0-^,, and the robot can move from P, (9. ,) to P, (0. ,) or P, (0. ,) 

without any collision after the rotation. 

The motion that rotates the robot from 0^. to 0^-^, about Pj and then translates it to 

another place P2 is referred to as an RT motion, and the link connecting P| (0^ and 

P9 (0/ + ]) is referred to as an RT link. If the motion translates the robot first and then rotates 

it, the motion is referred to as a TP motion and the link a TR link. Notice that RT links and TR 

links are directed. If Pj (0^ to ^2 ^ motion, there is no guarantee that there is 

a collision-free RT motion from + however, the reverse step, the TR 

motion from P, (9, + [) (0,) • is safe. For example, in Figure 5.2, since Pj has been 

determined to be in one collision-free cell of level 0, .,.,, it will be joined via RT links to the 

nodes of cell V1V2V3V4, P2(0, + 1) and P3(0, +1). However, P2(0, + 1) and P3(0,-+ ,) will link 

to Pi(0,) with TR links. If we link 1) to ^i(0, ) by an RT link, it will have collision 

because P2 is not in the free space of level 0^.. However, the motions /"i (0,) R 

^l (0 ,+  l )  ^  ^2  1^ '  ^2  1^ ^ 

both collision-free. 
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Level © 

\  

Level 0. \ / 

Level © .^. 

V .  

V, 

Level © . \  // 

(a) two adjacent levels (b) projection of the two levels onto the x-

y plane 

Figure 5.2. Proper rotation links 

5.2 3D Network Construction 

Now, we need to find if there is any cell at the adjacent layers which contain the target 

node. If there exists such cell, the target node will be linked to the nodes on the cell. 

5.2.1 Cell finding 

For any primary vertex, except for the "up_concave" vertex, there must be one or two cells 

just below the horizontal line, which passes through the primary vertex. 

For example, in Figure 5.3, all the primary vertices are numbered by the Arabic numbers, 
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m 

18 

Figure 5.3. Cell finding 

and some of the secondary vertices are numbered by letters. If the vertex is a "down_concave" 

vertex, e.g., vertex 5, there is only one cell below it. It is a triangular cell 6e7. Vertex e is the 

back vertex of vertex 6, and vertex 7 is the front vertex of vertex 6. Vertex e is the left vertex 

of vertex 7, and vertex 7 is the right vertex of vertex e. Thus, the location of cell 6e7 can be 

defined. 

If the primary vertex is a "down_convex" vertex, e.g., vertex 7 in Figure 5.3, there will be 

a quadrilateral cell leJy just below it. Vertex i is the right vertex of vertex 7, and vertex e is the 

left vertex of vertex 7. Vertex j is the front vertex of vertex /, and vertex 5 is the back vertex of 
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vertex e. 

If the primary vertex is a "up_convex" vertex, e.g., vertex 0 and vertex 2 in Figure 5.3, 

there will be two cells below it. For vertex 0, there are two quadrilateral cells, a09b and 

Ocl3d. For vertex 2 there is one quadrilateral cell and one triangular cell, 2kg3 and mil. 

Those cells can also be traced by the vertex information stored in vinfo. 

Similarly, the cell below a right or left primary vertex can be found by the same data struc­

ture. 

5.2.2 3D network algorithm 

If the motion field in one adjacent node of a center node is 0, that means it is a RT link 

from the center node to this adjacent node. If the motion field is 1, it is a TR link. The proce­

dure for constructing the 3D network is as follows. 

Procedure Construct3DNetwork 

Begin 

1. for every rotation level i do 

2. for every node p on the passage network of the given level i do 

3. if there is any cell g in level i + 1 which contains n then 

4. for every node m on cell g do 

5. /* Link node p with node w by an RT link (node p is the center node) */ 

6. create a pointer ptr with Netlist data type; 

7. ptr->nodeid = m; ptr->level = /+l; ptr->motion = 0; 

8. ptr->weight = the x-y distance between p and m; 

9. insert ptr into the linked list pointed by netnode[i][p]->next; 

10. /* Link node m with node p hy a TR link (node m is the center node) */ 

11. create a pointer ptr with Netlist data type; 

12. ptr->nodeid = p\ ptr->level = /; ptr->motion = l\ 
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13. ptr->weight = the x-y distance between p and m; 

14. insert ptr into the linked list pointed by netnode[i+\][m]->next\ 

15. (repeat steps 3 - step 14 for level i - 1 instead of level i + 1); 

End; 

Since there are 0(/z) nodes at each orientation level, step 2 will be repeated 0[n )  times. 

Step 3 is a point location problem, and it can be done by two binary searches. The first search 

finds the vertical location in O (logn) time, since there are 0(n) slabs in the FP. The second 

search finds the horizontal location in O (logiV) time, since there are 0{N) cells in one slab. 

Thus, step 3 will take O (logn) time for each target node. Since there are at most four gates 

for each cell, steps 5 and 14 take constant time. The execution time for step 15 is the same as 

that of steps 3 through 14. If the rotation interval is 5, there will be 7c/5 levels; let c = 7c/5. 

Thus, the total execution time for procedure ConstructsDNetwork is O (c/ilogn) . 

5.3 Motion Planning Algorithm 

We use Dijkstra's algorithm [16] technique to search the 3D network to find the shortest 

path. The whole motion planning algorithm is described as follows. 

Algorithm Motion-Planning 

Begin 

1. for every rotation level i do 

2. Find the C-space obstacles; 

3. Set_E_V_Info(); 

4. Sort the vertices in C-space obstacles by non-increasing y coordinate and put them 

in ylisf, 

5. HsliceQ; 

6. NetworkperLevelO; 

7. Construct3DNetwork(); 
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8. Search for the shortest path by Dijkstra's algorithm; 

9. Project the path onto the x-y plane; 

End; 

If the moving object has 0(1) vertices, step 2 of Algorithm Motion-planning will take 0(n) 

time to build the C-space obstacles for each level. It takes constant time to obtain the vertex 

and edge information for each vertex and edge, so steps 3 takes 0(n) time per level. Step 4 

takes O («logn) time to sort n vertices. Step 5 takes Oi(n + k)N) time, and step 6 takes 

O (n) time. Thus, steps 1 through 6 take a total of O (c {{n + k) N + nlogn)) time. Step 7 

takes 0 (c/ilogn) time. The number of links originating at each node in a 3D network is at 

most fourteen: four connect to the previous level, four connect to the next level, and another 

six links connect to the nodes at the same level. Thus, there are 0(cn) links in a 3D network, 

so it takes 0(c/i) time to search. Step 9 takes 0(cn) time to project the path onto the x-y plane. 

Thus ,  t he  to t a l  r unn ing  t ime  fo r  A lgo r i t hm Mot ion -P lann ing  i s  O {c  { {n  +  k )  N  +  n \ogn) ) .  
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6. RESULTS AND CONCLUSIONS 

This chapter will show the implementation results and the comparisons with other path 

planners. Some conclusions and discussions are also given. 

6.1 Implementation and Comparisons 

The algorithm has been implemented in C-h- on a Silicon Graphics workstation using 

Open Inventor for graphics display and Xt/Motif for the graphical user interface. Figure 6.1 

(a) shows an obstacle environment with a rectangular robot at the center. Figure 6.1 (b) is the 

top view of the 3D network. Figure 6.1 (c) is a close-up side view of the 3D network. 

Figure 6.1 (d) shows the final collision-free path projected onto the x-y plane. In Figure 6.2, 

six environments taken from the literature are shown. Table 6.1 compares this work with the 

planners developed by Zhu and Latombe (ZL) [102], Barbehenn and Hutchinson (BH) [5], 

and Vleugels et al. (VKO) [94]. Execution times are affected by different implementations, 

machines, and experimental conditions. 

ZL and BH use the hierarchical approximate cell decomposition approach. The main step 

of that approach is recursively decomposing the 3D MIXED cells in {x,y, 0). Unlike their 

approach, the cells generated by our path planner are all 2D EMPTY cells. Thus, we do not 

need the complicated procedure to recursively decompose the cells. Vleugels et al. [94] use a 

neural network and deterministic technique to solve the problem. They obtain the times by 

averaging over 100 runs of their program. Although their results seem good, the variation 

between the best result and the worst result is very large. Also, choosing the "adequate learn­

ing parameters" for each environment is important to obtain the best results. 
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(a) input environment 

Figure 6.1. One implementation example 
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(b) top view of the 3D network 

Figure 6.1. (continued) 
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(c) side view of the 3D network 

Figure 6.1. One implementation example (continued) 
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J 

(d) final route 

Figure 6.1. (continued) 
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(a) example 1 

Figure 6.2. Six environments 
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(b) example 2 

Figure 6.2. (continued) 
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(c) example 3 

Figure 6.2. (continued) 
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(d) example 4 

Figure 6.2. (continued) 
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(e) example 5 

Figure 6.2. (continued) 
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(f) example 6 

Figure 6.2. (continued) 
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Table 6.1 Comparisons of the six examples 

ZL [102] BH [5] VKO [94] Chen 

Machines Apple 
Macintosh 
n 

SUN IPC SGI Indigo 
R3000 
33MHz 

SGI Indigo 
R3000 
33MHz 

Languages Allegro 
Common 
Lisp 

Lucid 
Common 
Lisp (vl.3) 

C/C++ C++, Xt/ 
Motif 
Open 
Inventor 

CPU time(mm) 

I 0.6 1.2 N/A 0.012 

2 2.5 8.1 N/A 0.059 
C/3 U 
a. 3 5.5 6.5 N/A 0.034 
E ca X o 

4 5.0 4.5 N/A 0.024 
E ca X o 

5 N/A N/A 0.083 0.028 

6 N/A N/A 0.078 0.035 

6.2 Conclusions and Discussions 

Algorithms for collision-free path planning have become quite valuable in a variety of 

applications such as robotics, virtual prototyping, assembly planning, and computer graphics. 

Applied computational geometry also plays an important role in many fields such as medi­

cine, drug design, manufacmring design, feature design, IC board routing design, geography 

problems, etc. 

In this study, an 0(c((n + A:)A^-i-/ilog;i)) time algorithm is presented for planning a 

heuristic shortest path. A slabbing technique is used to find the contour of a set of intersected 

C-space obstacles and a passage network for each rotation level. Successive orientation levels 



www.manaraa.com

76 

are connected by the proper rotation links to construct a directed 3D network. Then, Dijkstra's 

algorithm is used to find the shortest path in the 3D network. Finally, the path is projected onto 

x-y plane. This algorithm is straight-forward and easy to implement. 

This algorithm has several contributions. First, it incorporates robot rotation and transla­

tion. Secondly, it allows intersected C-space obstacles and calculates the contour of the inter­

sected C-space obstacles efficiently. Then, it combines slabbing technique and network 

searching. Experiments show that this approach is significantly faster and simpler than other 

approaches. 

One question that arises here is whether this path planner can always find a collision-free 

path if such a path exists. We would like to determine it is true or false. 

The robot in this study is called a "free flying" robot. That means the robot can rotate and 

translate freely in the plane among a set of obstacles. Another kind of robot is called a "car­

like" robot. The motions of the car-like robot have certain non-holonomic constraints, i.e., 

non-integrable kinematic constraints [6], [22], [23], [24], [33], [46], [47], [48], [49], [59], 

[67], [72], [81], [82], [83], [88], [91], [98] and are therefore more difficult. Modification of the 

path planner developed here to adapt to the constraints of car-like robots is another interesting 

research topic. 
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APPENDIX. EXACT DESCRIPTION OF THE B-VORONOI DIAGRAM 

OF A HOMOTHETIC ROBOT MOVING THROUGH 

TWO OBSTACLES 

This Appendix presents a simple 0(n) time algorithm to move a homothetic robot, i.e., a 

scaled and translated copy of a 2D robot, through two polygonal obstacles along its 5-Voronoi 

diagram, where n is the total number of edges. The 5-Voronoi diagram represents a locus of 

robot path points from which it can expand or contract to touch the two obstacles simulta­

neously. The algorithm actually computes the feasible locus, that is, a description of the set of 

all turning points of the polygonal path. 

A.l Introduction 

Motion planning is a fundamental problem in robotics. In general, the goal is to find a col­

lision free path for a robot amidst obstacles. While there have been several important theoreti­

cal algorithmic results in the field, many of the procedures developed so far are difficult to 

implement. Here, a linear time algorithm is presented to find the exact description of the high 

clearance locus for a homothetic robot moving through two obstacles. This algorithm plays an 

important role in an 0(n \o%N) time algorithm by Leven and Sharir [52] for planning a purely 

translational motion of a convex object among a set of polygonal obstacles in two-dimen-

sional space, where n is the number of obstacle comers and N is the number of obstacles. 

Motion planning problems can often be reduced to finding a high-clearance path in a 

Voronoi diagram. Voronoi diagrams partition the plane into several regions called Voronoi 

cells. Each cell is associated with a unique closest point or object of a given set of obstacles, 

so the Voronoi diagram is the locus which is equidistant to at least two obstacles. 

If the obstacles are points in a plane, the standard Voronoi diagram of those points parti­
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tions the plane into several convex polygonal regions (see Fig. A.l (a)). When the moving 

object is a disc, the diagram is the locus of the centers of all maximal circumscribed circles, 

and the partitions of the plane will be smooth curves (see Fig. A. 1 (b)). If the moving object 

and the obstacles are polygons, and we use the convex distance function mentioned in [52] to 

define the distance, then the partitions of the plane will be polygonal arcs (see Fig. A. 1 (c)), 

and the Voronoi diagram of those polygons is called the B-Voronoi diagram. 

Since the objects in this Appendix are two polygonal obstacles and a polygonal robot, the 

Voronoi diagram we consider is a polygonal arc, composed of several segments. The intersec­

tions between segments are called turning points. This algorithm first finds the turning points 

between segments. The 5-Voronoi diagram is then obtained by connecting these tuming 

points. In this Appendix, three questions are addressed. First, how to find the first tuming 

point; e.g., point ry in Figure A.l (c). Second, how to find the points between the first one and 

the last one. Finally, how to find the last tuming point; e.g., in Figure A. I (c). 

Section 2 reviews the 5-Voronoi diagram. Section 3 gives the procedures to find the tum­

ing points, and section 4 presents some conclusions. 

A.2 Definitions 

A.2.1 Voronoi diagram 

Let 5 be a convex robot, and let O be a reference point inside B. If 0 lies at the origin, the 

position of B is called standard position, and it is denoted by Bg. If B is scaled by a factor X 

when it is at the standard position, it is denoted by XB^. 

In [52], the B-distance from a point /? to a point q is defined by 

dgiP' = inf{X: qe p + XB^ }. 
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B 

(a) obstacles are points (b) moving object is a disc (c) moving object is a 

polygon 

Figure A.l. Voronoi Diagrams 

Informally, d g ( p ,  q )  is the smallest scaling factor X  such that when the reference point O  o i B  

is on point p, XBg just touches q. Similarly the 5-distance from a point p to an obstacle 5,- is 

defined as 

dgip. Si) = inf{ X: p + XBQ n 5- 0 }, 

so there exists a point y 6 such that when X = dgip, 5,) and the reference point O is on p, 

XBg touches 5/. Point y is called the B-closest point on S,- to B. The set of all points whose B-

distance to Si is less than or equal to the fl-distance to Sj for i j is defined as 

j )  = [ p  e  E ^ : d g  ( p ,  S . )  <  d g  (p, S j )  } .  

The B-Voronoi cell with respect to 5,- is defined as 

Cb(5,)= 
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Thus, the fi-Voronoi diagram is defined to be the set of points which belong to more than one 

fi-Voronoi cell. 

In order to avoid degenerate configurations, we assume the obstacles and B are in general 

position [52], i.e., we assume that no boundary edge of B is parallel to the boundary edge of 

any obstacle or to a line joining a pair of boundary comers of these obstacles. This assumption 

prevents 5-Voronoi segments from degenerating into general two-dimensional regions. An 

example is of a degeneracy shown in Figure A.2. Edge e of polygon B is parallel to ab. The 

dotted triangles are some XB^ that touch the two obstacles simultaneously and the shaded area 

is a degenerate two-dimensional area of the 5-Voronoi diagram. 

As long as the scaling factor X is greater than one, we can move the robot along the B-

Voronoi diagram without collision, and it can be used to plan high-clearance motion for any 

object that is similar to B. In other words, if there are two similar robots with different sizes, 

only one j5-Voronoi diagram needs to be computed to do the motion planning for both robots. 

— / 

Figure A.2. 2D B-Voronoi Diagram 



www.manaraa.com

81 

A.2.2 Data structures 

Edges in tiie objects are represented by vectors. The edge vectors for obstacles Sj and S2 

are listed in counterclockwise order, while the edges for the robot B are ordered in clockwise 

order. Suppose the two outer supporting lines of 5/ and S2 are sp/ and sp2. The two supporting 

lines and the two obstacles form a closed region. The list of edge vectors which belong to S/ 

(resp. S2) in the closed region is called Cj (resp. C2) (see Fig. A.3 (a)). 

The direction of s p y (resp. s p 2 )  is the same as that of the ray shooting from the start point 

of Cy (resp. C2) to the end point of C2 (resp. Cj). The two outer supporting lines can be found 

in time proportional to the total number of vertices of 5/ and S2 [68]. We will suppose spi is 

closer to B than sp2. 

A.2.3 Preliminary observations 

Observation A.2.1: When XBg touches S; and S2 simultaneously, the two contact points on 5/ 

and $2 lie on Cy and C2 respectively. 

Leven and Sharir [52] have shown that the turning points correspond to configurations where 

one vertex of B touches one vertex of S'y or 82- In Figure A.4 we can see that the scaling factor 

for moving B from the position where V2 touches vertex a until it touches vertex is a contin­

uous decreasing linear function. Similarly, if B is continuously enlarged and moved from the 

configuration where V2 touches vertex b until it touches vertex c, the scaling factor is another 

linear function. 

The turning point occurs at the intersection of the two lines, i.e. when vertex V2 of XBg 

touches vertex b of the obstacle. We take this as an observation. 
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SP,  5d  

(a) input Vectors (b) sorted vectors 

Figure A.3. Vectors in the objects 

Figure A.4. Turning Point 
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Observation A.2.2: When one vertex of XBg touches a vertex of 5/ or S2, there is a turning 

point of the fl-Voronoi diagram. 

Two objects are said to have a W contact if one vertex of an object touches one vertex of 

another object. An EV contact is one where an edge of an object touches a vertex of another 

object. Similarly, a VE contact is one where a vertex of an object touches an edge of another 

object. 

Lemma A.2.1: If is on the right-hand side of spi and moved along the iB-Voronoi diagram 

from infinity towards the first turning point r/, the same two consecutive edges of B, say e*-

and simultaneously and constantly touch 5/ and S2 (see Fig. A.l (c)). 

Proof: We know that the turning point tj corresponds to a VV contact between one vertex of B 

and one vertex of 5/ or 82- Suppose edges e,- and ej of XB^ touch S/ and S2 and are not consec­

utive when XBQ moves along the 5-Voronoi diagram from some point p (a point lying between 

infinity and tf) to tf. Therefore, there exists one edge ei^ of "kBg, lying between e,- and ep that is 

between Sj and S2, so that if XB^ is moved from infinity to p, a certain scaling of ej. will touch 

Sjor S2 before e,- or ej touches Sj or S2. Edge e/^ makes a VV contact before arrives tj, so 

tj is not the first turning point, which contradicts the assumption. • 

In Lemma A.2.1, the vertex v*- between e*j and e*/+/ is referred to as a blocking vertex. 

Lemma A.2.2: If XB^ is on the right-hand side of sp2 and moved along the fi-Voronoi diagram 

from infinity towards the last tuming point tj., the same two consecutive edges of B, say e*j 

and e*y+/, simultaneously and constantly touch S; and S2 (see Fig. A.l (c)). 

Proof: Similar to the proof of Lemma A.2.1. 
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Observation A.2.3: From Lemma A.2.1 it is easy to see that when the reference point O of 

lies between f/ and infinity, spi cuts a triangle from polygon "kBg and the edge vectors of the 

triangle are spj, e*-, and £*•+/- (see Fig. A.5) 

A.3 Finding the Ibrning Points 

The segments of the 5-Voronoi diagram can be classified into three groups. The first one 

consists of the ray shooting from the first turning point to infinity. The second group contains 

the segments between the first and the last turning points. The third group consists of the ray 

shooting from the last turning point to infinity. 

A.3.1 Finding the first turning point 

We denote by v;^ the vertex of XBg corresponding to vertex v e 5. The first step to find the 

5-Voronoi diagram is to identify the blocking vertex v*,-. The following Lemma gives us an 

easy way to find vertex v*,-. Let e*- and be the two edges adjacent to v*-. 

Lemma A.3.1: The two consecutive vectors e*- and e*,+/ are the pair of consecutive edge vec­

tors in B with the property that the slope of e*- is less than the slope of spj and the slope of 

e * i + ]  i s  g r e a t e r  t h a n  t h e  s l o p e  o f  s p j .  

Proof: From Lemma A.2.1 and Observation A.2.3, we know that vector spj is the tangent vec­

tor of V*-, so the slope of spi is between the slope of e*- and e*+y. • 

From Lemma A.3.1, we can see that vertex v*- can be found in time linear in the number of 

edges in B. 

Observation A.3.1: Suppose v*- is the blocking vertex between Sj and 82- Then there are three 
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cases (see Fig. A.5). Case 1: does not touch 5/ nor S2- Case 2: touches Sj. Case 3: 

touches S2-

Sort the vectors in Cy, C2, the vectors in B ,  and the supporting vectors s p j  and sp2, by the 

slope order. Put the sorted vectors in a unit circle (see Fig. A.3 (b)). The sorted vectors of 

sp^ u sp2 u C, (resp. sp^ u sp^ u C2) in the unit circle which are adjacent to e*- (resp. 

e*i+i) are referred to as rj and r2 (resp. rj and r^). The vertex between rj and r2 is referred to 

as and the vertex between rj and is ^2- other words, e*i and e*+/ are the tangent vec­

tors of and q2 respectively. For example, in Figure A.3, edges b and c of polygon B are the 

two consecutive edges when XB^ touches the two obstacles before the reference point arrives 

at the first turning point, rj and r2 are edges 7 and 8, and and are edges 5 and sp j. There­

fore, finding qj and 92 takes time linear in the number of edges in C/ and C2. 

The following algorithm finds the location of and its blocking case. 

Algorithm Find_The_BlockjCase(e*i, e*i+j, qj, q2) 

Begin 

Draw a line, through qj and parallel to e*-; 

Draw a line, I2, through q2 and parallel to e*-+/; 

Find the intersection w of the two lines; 

If q j w q 2  makes a right turn then 

v*iX = w; 

v* ;^^ is case 1; 

Stop; 

Else 
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fi+i)\ 

(a) easel (b) case2 (c)case3 

Figure A.5. Three cases for v*-

If there exists one segment, r,-, in C/ intersects with I 2  at y  and e  *• x r . < Q  then 

v*iX = y 

v*ix is case 2; 

Else 

= the intersection of C2 and Ij; 

v*ix is case 3; 

End 

Algorithm Find_The_Block_Case takes time linear in the number of edges in C/ and €2-

Since the objects are in general position, will not be coincident with the vertices in 5"/ 

or S2 when TiBg is on the fl-Voronoi diagram. In order to find the position of the reference 



www.manaraa.com

87 

point O  (the first turning point t j ) ,  for case 1 we need to find the ratio qiv*Q/e*i and v *oj:i2/ 

e * i + j .  T h e  l a r g e r  r a t i o  w i l l  b e  X ' ,  t h e  s c a l i n g  f a c t o r  w h e n  B  a r r i v e s  a t  t j .  T h e  s c a l i n g  f a c t o r  X '  

for case 2 is v*^q2/e*i^i and for case 3 it is The time for finding X' is only 0( 1) 

for each case. Once X' is found, the ray shooting from the first turning point to infinity in the 

5-Voronoi diagram can be determined. 

Since any vector in B  is parallel to its corresponding vector in X B ^ ,  t j  is the intersection 

point of the line, passing through and parallel to 0 in B, with another line, passing 

through the VV contact and parallel to its corresponding segment in B when the scaling factor 

is X'. For example, in Figure A.6, tj is the intersection of I2, which is parallel to v* (9 in B, and 

of I J, which passes dirough and is parallel to We use ray(a, d) to describe a 

ray whose starting point is a and its direction is d. From Lemma A.2.1, we can see that when 

the scaling factor is greater than X', the reference point ofXBg will lie on ray(/y, Thus, 

the ray shooting from tj to infinity in the fl-Voronoi diagram is determined by ray(r/, v*^ti). 

The procedure is described in more detail below. 

Algorithm Find_The_Ray_in_B-Vor(v*i, e*-, qj, q2) 

Output: the first turning point r/; 

the ray shooting from tj to infinity; 

Begin 

Find_The_Block_Case(e*-, q j ,  q 2 ) ;  

If (v*^ e blocking easel and q]V*i}/e*i < v*ixqye*i+j) or e blocking case 2) then 

= v*ixqye*i+i-, 

t j  = Find_The_Tuming_Point(^2' 

Retum(ry, ray(r/, 

Else 
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( i + 1 )  

Figure A.6. Find the first turning point 

t/ = Find_The_Tuming_Point(<j/, v*-./, v*-^ v* ); 

Retum(ry, ray(f;, v*ixtj)y. 

End 

Algorithm Find_The_Tuming_Point(zi, Z2, Zj. Z4) 

Begin 

Draw a line If from Zj parallel to ; 

Draw a line I2 from zj parallel to z^O ; 

Retum(the intersection point of // and / 2); 



www.manaraa.com

89 

End 

Since Algorithm Find_The _Block_Case is called in Algorithm Find_The_Ray_in_B-Vor, 

Algorithm Find_The_Ray_in_B-Vor also takes time linear in the number of edges in C/ and 

C2 to find the first turning point and the ray shooting from the first turning point to infinity. 

A.3.2 Finding the interior turning points 

Now we can slide B from // into the passage until we find another two consecutive edges 

of B that touch Sj and $2 simultaneously. In Figure A.3, when B moves from the right-hand 

side of spi to the right-hand side of sp2, XBg traces around Sj counterclockwise and traces 

around S2 clockwise. Since XB^ touches S/ and S2 simultaneously, there are two contact 

points: one between S/ and XBg and one between XBg and S2. The contact types of the moving 

object and the obstacles can be VV, VE or EV. Since the objects are in general position, the 

two contacts cannot both simultaneously be VV contacts, and there is no EE contact either. 

The contact vertex and the contact edge will be called the tracing vertex and the tracing edge 

respectively. Except for VV contacts, there are always two tracing vertices and two tracing 

edges during the motion. Observation A.3.2 determines the tracing condition during the 

motion. 

Suppose there is a W contact when B slides around the boundary of polygon Si clockwise 

(resp. counterclockwise). Let p be the contact point, and let pg be the vertex on B that coin­

cides with p. Let p^ be the vertex on 5,- that coincides with p. Let ej^ be the edge in B just 

ahead (resp. behind) of p and let Cj be the edge in 5,-just behind (resp. ahead) of p (see Fig. 

A.7). We have the following observation. 
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(a) B traces 5,- in clockwise (b) B traces 5,- in counterclockwise 

Figure A.7. Tracing vertices and tracing edges 

Observation A.3.2: If x ej is greater than zero (resp. less than zero), will trace cy, other­

wise will trace Cf. after the W contact. 

Since the turning point occurs when there is a VV contact, we need to determine if the tracing 

vertex between B and Sj reaches some vertex first or the tracing vertex between B and S2 

reaches some vertex first (see Fig. A.8). The following algorithm finds the two tracing verti­

ces, two tracing edges, and the two vertices that the two tracing vertices will hit. In it, start(e) 

(resp. end(e)) denotes the start (resp. end) point of vector e. 

Algorithm Find_Tracing_Vertices_and_Edges(ej, 62, e^, e^) 

Input: ef vector in B coming just behind the latest VV contact point with 

62- vector in B coming just ahead of the latest VV contact point with S2', 

e f .  vector in 5/ coming just ahead of the latest VV contact with 5; 

64. vector in S2 coming just behind the latest VV contact with B\ 
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Output: Trace_V[l]: tracing vertex between B and 5/; 

T r a c e _ V [ 2 ] :  t r a c i n g  v e r t e x  b e t w e e n  B  a n d  S f ,  

Trace_E[l]: tracing edge between B and 5/; 

Trace_E[2]: tracing edge between B and S2', 

Next_V[l]: the next vertex that Trace_V[l] will hit; 

Next_V[2]: the next vertex that Trace_V[2] will hit; 

Begin 

I f  ( g j  x e ^ > 0 )  then 

Trace_V[l] = start(e^)\ 

Trace_E[l] = e/; 

Next_V[l] = start(ejy. 

Else 

Trace_V[l] = end(ejy, 

Trace_E[l] = ej. 

Next_V[l] = end(ej)\ 

I f ( e2Xe4>0 )  then  

Trace_V[2] = start(e2)\ 

Trace_E[2] = 64, 

Next_V[2] = start(e4y. 

Else 

Trace_V[2] = end(e4y, 

Trace_E[2] = 62', 

Next_V[2] = end(e2y 

End 
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XB 

Next.VCn 

Trace_EC2] 

Next_VC2] 

TrQce_V[2] 

XB 

Si 

Figure A.8. One tracing vertex is in B, another one is in S 

From Algorithm Find_Tracing_Vertices_and_Edges, we know that the next VV contact 

occurs when either Trace_V[l] coincides with Next_V[l] or Trace_V[2] coincides with 

Next_V[2]. It is now necessary to determine which one happens first. 

If the two tracing vertices are all in B or all not in B, we can find the turning point through 

the line connecting the two tracing vertices because the line has a fixed orientation during the 

motion. Without loss of generality, suppose the two tracing vertices are all in B and 

Trace_V[l] hits Next_V[l] first. At this time Trace_V[2] should still be on Trace_E[2]. Since 

any vector in B is parallel to its corresponding vector in 7^^, we know that if we draw a line L, 

passing through Next_V[l] and parallel to Trace_V[l]Trace_V[2], L should intersect with 

Trace_E[2] and the intersection point will be the contact point between B and S2 when 

Trace_V[l] coincides with Next_V[l]. If L does not intersect with Trace_E[2], that means 

Trace_V[2] hits Next_V[2] first. After the intersection point and the VV contact are deter­

mined, the turning point can be found by Algorithm Find_The_Tuming_Point. 

The same strategy is applied when one tracing vertex is in B and another one is not in B. L 
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will be the line passing through Trace_V[l] and parallel to Next_V[l]Trace_V[2]. If L inter­

sects with Trace_E[2], Trace_V[l] will hit Next_V[l] first; otherwise Trace_V[2] will hit 

Next_V[2] first (see Fig. A.8). The whole procedure for finding all intermediate turning points 

takes 0{n) time. 

A.3.3 Finding the last turning point 

From Lenuna A.2.2, we know that when there are another two consecutive edges in B 

touching Si and S2 or only one vertex of B blocks in the closed region again, we have found 

the last turning point. We can therefore follow the same steps described in Section 3.1 to find 

the last turning point and the ray shooting from it to infinity. 

A.4 Conclusion 

This Appendix gives an 0{n) algorithm to find the exact description for every turning 

point in the j5-Voronoi diagram when there are two obstacles and one homothetic robot. Once 

all of the turning points are found, and if all of the scaling factors are greater than one, we can 

move the robot along the path without collision. 
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