
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1997

Collision-free path planning
Shiang-Fong Chen
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Mechanical Engineering Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Chen, Shiang-Fong, "Collision-free path planning " (1997). Retrospective Theses and Dissertations. 11449.
https://lib.dr.iastate.edu/rtd/11449

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F11449&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F11449&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F11449&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F11449&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F11449&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F11449&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=lib.dr.iastate.edu%2Frtd%2F11449&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/11449?utm_source=lib.dr.iastate.edu%2Frtd%2F11449&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

INFORMATION TO USERS

This manuscript has been rqsroduced from the microfilm master. TJMI

films the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter &ce, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in reduced

form at the back of the book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6" x 9" black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI
A Bell & Howell Information CompaiQ'

300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

www.manaraa.com

www.manaraa.com

Collision-free path planning

by

Shiang-Fong Chen

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHmOSOPHY

Major: Mechanical Engineering

Major Professor: James H. Oliver

Iowa State University

Ames, Iowa

1997

Copyright © Shiang-Fong Chen, 1997. All rights reserved.

www.manaraa.com

UMI Number: 9725400

Copyright 1997 by-
Chen, Shiang-Fong

All rights reserved.

UMI Microform 9725400
Copyright 1997, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI
300 North Zeeb Road
Ann Arbor, MI 48103

www.manaraa.com

ii

Graduate College
Iowa State University

This is to certify that the Doctoral dissertation of

Shiang-Fong Chen

has met the dissertation requirements of Iowa State University

Major Professor

For the Major Program

For the Graduate College

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

www.manaraa.com

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS v

ABSTRACT vi

1. INTRODUCTION 1
1.1 Background 1
1.2 Overview 3
1.3 Organization of This Study 4

2. LITERATURE REVIEW 5

2.1 Hierarchical Approximate Cell Decomposition Approach 5

2.2 Voronoi Diagram Approach 6
2.2.1 Standard Voronoi diagram 7
2.2.2 Moving object is a disc and obstacles are polygons 9
2.2.3 Moving object and obstacles are polygons 10
2.2.4 Approximating generalized Voronoi diagram 10
2.2.5 Translation and rotation 10

2.3 Potential Field Approach 11
2.4 Network Representation Approach 11

2.4.1 Translation 11
2.4.2 Translation and rotation 13

2.5 Other Approaches 15

2.6 Conclusion 16

3. DATA STRUCTURES 17

3.1 Edge Information 17
3.2 Vertex Classification 18

3.3 Vertex Information 20

3.4 Intersection Information 21
3.5 Relative Position of a Vertex to an Edge 22

www.manaraa.com

iv

4. PASSAGE-NETWORK CONSTRUCTION FOR ONE ROTATION
LEVEL 23

4.1 Methodology Overview 23
4.1.1 Contour construction 23
4.1.2 Free-space slicing 25
4.1.3 Network construction for a single level 25

4.2 C-space Obstacle Construction 27

4.3 Edge and Vertex Information Setting 27
4.4 Slicing Procedure 30

4.4.1 Updating information 30
4.4.1.1 Updating the edges in the current slab 31
4.4.1.2 Updating the intersection information and vertex information .31

4.4.2 Contour finding 34
4.4.2.1 Detail of the contour finding algorithm 35
4.4.2.2 Contour vertex lying on some edge 37

4.4.3 Plane graph 46
4.4.4 Detail of the slicing algorithm 48

4.5 Network Construction for a Single Level 50
4.5.1 Data structures 50
4.5.2 Network construction 54

5. 3D PASSAGE NETWORK CONSTRUCTION 56

5.1 Proper Rotation Links 56

5.2 3D Network Construction 59
5.2.1 Cell finding 59
5.2.2 3D network algorithm 61

5.3 Motion Planning Algorithm 62

6. RESULTS AND CONCLUSIONS 64
6.1 Implementation and Comparisons 64

6.2 Conclusions and Discussions 75

APPENDIX. EXACT DESCRIPTION OF THE B-VORONOI DL\GRAM
OF A HOMOTHETIC ROBOT MOVING THROUGH TWO OBSTACLES .77

REFERENCES 94

www.manaraa.com

V

ACKNOWLEDGEMENTS

This dissertation could not be accomplished without many people's assistance. First, I am

gratefiil to my advisor. Professor James Oliver for his support, trust, and guidance in many

ways. I also thank him for his valuable advice and full support in my job-hunting. I also appre

ciate the discussions with Professor David Femandez-Baca. His precious conunents and help

made this work possible. I am also thankful to Professor Daniel Ashlock, Professor James

Bemard, and Professor Donald Flugrad for serving on my Committee.

The support and humor of my colleagues at the Iowa Center for Emerging Manufacturing

Technology also enhanced the life in the basement of Black Engineering.

I also appreciate the prayers and warm caring of the brothers and sisters of the church. I

also thank my parents for their encouragement and love. Finally, I would like to thank my

Lord Jesus Christ for His unsearchable riches and bountiful supply.

www.manaraa.com

vi

ABSTRACT

Motion planning is an important challenge in robotics research. Efficient generation of

collision-free motion is a fundamental capability necessary for autonomous robots.

In this dissertation, a fast and practical algorithm for moving a convex polygonal robot

among a set of polygonal obstacles with translations and rotations is presented. The running

time is O (c ((n + k) N + nlogn)), where c is a parameter controlling the precision of the

results, n is the total number of obstacle vertices, k is the number of intersections of

configuration space obstacles, and N is the number of obstacles, decomposed into convex

objects. This dissertation exploits a simple 3D passage-network to incorporate robot

rotations as an alternative to complex cell decomposition techniques or building passage

networks on approximated 3D C-space obstacles.

A common approach in path planning is to compute the Minkowski difference of a

polygonal robot model with the polygonal obstacle envirormient. However such a

configuration space is valid only for a single robot orientation. In this research, multiple

configuration spaces are computed between the obstacle environment and the robot at

successive angular orientations spanning 7C. Although the obstacles do not intersect, each

configuration space may contain intersecting configuration space obstacles (C-space

obstacles). For each configuration space, the algorithm finds the contour of the intersected C-

space obstacles and the associated passage network by slabbing the collision-free space. The

individual configuration spaces are then related to one another by a heuristic called "proper

links" that exploit spatial coherence. Thus, each level is connected to the adjacent levels by

proper links to construct a 3D network. Dijkstra's algorithm is used to search for the shortest

path in the 3D network. Finally, the path is projected onto the plane to show the final locus

of the path.

www.manaraa.com

1

1. INTRODUCTION

1.1 Background

Motion planning is a major problem in robotics. The objective is to plan a collision-free

path for robots moving through a workspace populated with obstacles [1-102]. Efficient gen

eration of collision-free motion is a fundamental capability necessary for autonomous robots.

The typical goal is to specify a desired function at a very high level, then allow the robot to

plan and execute the motion by itself.

The concept of configuration space, presented by Lozano-Perez in 1983 [54], is widely

used in motion plarming. A configuration of a robot R is the description of any placement of R

in the workspace by a set of independent parameters that characterize the position of a refer

ence point fixed in R. The configuration space is the space of all configurations of R in the

workspace. The configuration space for planar polygons is three dimensions, while that of

solid polyhedra is six dimensions, including three translations and three rotations. If the robot

is a polygon in 9?^, the configuration of the robot is specified by (x , y , 9), where (x , y) is

the position of the reference O of the object and 0 is its rotation. If the orientation of the robot

is fixed, (oc, y) is sufficient to specify the configuration.

Those regions of the configuration space which are not reachable by the robot are referred

to as configuration space obstacles (also called C-space obstacles). The complement of the C-

space obstacles in the environment is called free space (FP). Thus, the configuration space

approach considers the robot as a single point and the obstacles as "expanded fat obstacles".

The expanded fat obstacles are the configuration space obstacles. Thus, the motion planning

problem is reduced to moving a single point among the configuration space obstacles as an

alternative to moving a 2D object among the polygonal obstacles. For example, in Figure l.I

(a), the obstacles are the dot shaded objects and the robot is a triangular object with reference

www.manaraa.com

(a) obstacle environment

(b) configuration space

Figure 1.1. Obstacle environment and configuration space

www.manaraa.com

3

point O. This environment can be reduced to Figure l.l (b) where the obstacles are the fat

shaded objects, C-space obstacles, and the robot has been shrunken to a point O.

Simply speaking, the motion-planning problem can be stated as follows:

Given an initial configuration R y and a goal configuration

R2 of a robot, determine whether there exists a collision-free

motion trajectory to move the robot from Rj to R2.

If so, plan such a motion.

1.2 Overview

This work is built upon the slabbing method proposed by Ahrikencheikh and Seireg [1],

which finds an optimal motion for a point among a set of non-overlapping obstacles. Here, we

extend the slabbing method to the motion planning of a convex polygonal robot with transla

tions and rotations, which also allows overlapping configuration space obstacles.

The contour is the boundary of the union of a set of intersected C-space obstacles. Succes

sive configuration spaces are computed for every 8 radians of angular rotation spanning from

-k/2 to k/2 . Each 6 is referred to as a rotation interval, and the successive configuration

spaces are referred to as rotation levels. The remaining orientations are symmetric to the range

[-71/2, K/2] , and therefore need not be considered. The individual configuration spaces are

then related to one another by a heuristic called proper rotation link that exploits spatial

coherence to construct a 3D network.

The major steps of the algorithm are as follows.

Begin

Step 1: Find the contour of the intersected C-space obstacles.

Step 2: Find the associated passage network for each rotation level.

Step 3: Connect each rotation level to construct a 3D network.

www.manaraa.com

4

Step 4: Search for the shortest path in the 3D network.

End

This algorithm has been fully implemented and the experimental results show that it is

more robust and faster than other approaches.

1.3 Organization of Tliis Study

The following sections are organized as follows. Chapter 2 gives a literature review.

Chapter 3 introduces the data structures used by the algorithm. Chapter 4 presents the algo

rithm for finding the contour of the intersected C-space obstacles and the algorithm for slab

bing FP. Chapter 5 describes and analyzes the algorithm for constructing the 3D passage

network. Chapter 6 gives implementation results and conclusions.

www.manaraa.com

5

2. LITERATURE REVIEW

There are several methods that have been investigated in the past, which build on the con

figuration space approach, to find a path. Some of these are reviewed in the following sec

tions.

2.1 Hierarchical Approximate Cell Decomposition Approach

Hierarchical approximate cell decomposition is one of the most popular approach to path

plarming [5], [9], [20], [21], [27], [41], [42], [70], [102]. It can deal with both translations and

rotations. The concept of this approach is very simple. Configuration space is divided into

rectangloid cells with edges parallel to the axes of the space. Cells are labeled as EMPTY or

FULL depending on whether they lie entirely outside or entirely inside the C-space obstacles.

Those ceils being partially inside the configuration obstacle are labeled as MIXED. A 2-D

example is shown in Figure 2.1. At each level of approximation, a search algorithm is used to

find a set of EMPTY rectangloid cells connecting the initial and goal configurations. If such

EMPTY set cannot be found, some MIXED cells are subdivided into smaller cells, and then

are labeled as EMPTY, ETJLL, or MIXED. Another search for a sequence of EMPTY cells is

executed again. This iterative process ends when a path is found or no path can be found

through the EMPTY cells of greater than the prespecified size.

D. Zhu and J.-C. Latombe speed the algorithm by using bounding and bounded approach

to decompose MIXED cells which generates a much smaller MIXED area and a larger

EMPTY/FULL area [102]. M. Barbehenn and S. Hutchinson improve the algorithm by using

a dynamically maintained single-source shortest path tree which is based on the idea that the

cormectivity graph changes slightly at each iteration [5].

www.manaraa.com

6

E V V K y E
\ s/ h V / j E
V. h M E

E v' V V E

Figure 2.1. 2D cell decomposition

2.2 Voronoi Diagram Approach

Some researchers approach motion planning problems with a Voronoi diagram [4], [14],

[25], [39], [52], [62], [63], [64], [71], [75], [76], [78], [89]. The Voronoi diagram approach is

one of the road map methods. A Road map is a graph of highways, along which it is safe to

travel, between the obstacles. With such a road map, a motion can be found by moving the

robot from the start configuration to some nearby highway. Then, the robot follows the map to

somewhere near the goal configuration and leaves the highway and moves to the goal config

uration.

The Voronoi diagram approach is usually used in planning a high-clearance motion.

Voronoi diagrams partition the plane into several regions. Those regions are called Voronoi

cells. Each cell associates with one unique closest point or object of a given obstacle set S, so

the Voronoi diagram is the locus which are equidistant to at least two obstacles. The vertices

of the diagram, which are equidistant to more than two obstacles, are called Voronoi vertices.

www.manaraa.com

7

Voronoi diagrams have many applications, for example, in the field of robotics, computer

graphics, motion planning, biology, and geography and so on.

The retraction method is used with the Voronoi diagram approach. The term retraction

corresponds to a continuous map from a topological space X to a subset A of X such that every

point of A is mapped onto itself and every point in X - A is mapped onto some point in A [60].

After the configurations /?i and Rj of the robot are given, a retraction of Ri and /?2 onto con

figurations /?j' and on the Voronoi diagram can be computed. If /?j' and are con

nected by some path entirely on the Voronoi diagram, the robot can move from Ri to /?2-

Different kinds of Voronoi diagrams are reviewed in the following sections.

2.2.1 Standard Voronoi diagram

If the obstacles are points in a plane, the standard Voronoi diagram of those points parti

tions the plane into several convex polygonal regions (see Figure 2.2 (a)). Given two points, /?,•

and pj, the set of points closer to p, than to pj is the half-plane containing pi that is defined by

the perpendicular bisector of p^p j . Let us denote this half-plane by H(pi, pj). The points closer

to Pi than to any other point, which is denoted by V(/), is the intersection of AT - 1 half-planes.

That is

V(0= nH{p . ,p j) .
i

V{i) is called the Voronoi polygon associated with pi. The line segments are called Voronoi

edges. The Voronoi diagram of a set of N points in the plane can be constructed in

O (NlogN) time [68]. After the Voronoi diagram is computed, the robot can trace the Voronoi

edges to produce a high-clearance path.

www.manaraa.com

8

(a) obstacles are points

(b) moving object is a disc

Figure 2.2. Voronoi Diagram

www.manaraa.com

9

(c) moving object is a polygon

Figure 2.2. (continued)

2.2.2 Moving object is a disc and obstacles are polygons

When the moving object is a disc, the diagram is the loci of the centers of all maximal cir

cumscribed circles (also called external skeleton [38]), and the partitions of the plane will be

smooth curves (see Figure 2.2 (b)). D. Kirkpatrick gives an 0 (nlogn) time algorithm to

construct the skeleton of arbitrary n-line polygonal figures [38]. Since the moving object is a

disc and the radius of the disc can be adjusted to touch at least two obstacles, the loci of the

external skeleton are equidistant to at least two obstacles in the Euclidean metric. This method

can be combined with the configuration space approach. If a high clearance motion is required

for moving a polygonal robot, configuration space can be computed first to shrink the robot to

a point, then find the external skeleton of the configuration space. Thus, if the robot is moved

along the external skeleton, it will always have the highest clearance to the obstacles.

www.manaraa.com

10

2.2.3 Moving object and obstacles are polygons

If the moving object and the obstacles are polygons, and we use the convex distance func

tion mentioned in [52] to define the distance, the Voronoi diagram of those polygons are called

B-Voronoi diagram, and the partitions of the plane may be concave polygonal regions (see

Figure 2.2 (c)). D. Leven and M. Sharir give an O (/ilogn) time algorithm to construct a B-

Voronoi diagram for a purely translation motion, where n is the total number of obstacle cor

ners. More details about the 5-Voronoi diagram are given in the APPENDIX.

2.2.4 Approximating generalized Voronoi diagram

J. Vleugels and M. Overmars give an easier algorithm to compute an approximating

Voronoi diagram [95]. They subdivide the space into primitive cells and test the distance

between the obstacles and cells. Those cells having the same distance to at least two obstacles

are on the Voronoi diagram. However, since the testing sequence for these cells is usually

firom left to right and top to bottom, this approximating algorithm has difficulty finding the

connectivity relationship of the cells lying on the Voronoi diagram, after all cells are tested.

2.2.5 lYanslation and rotation

The Voronoi diagram approach is commonly used to plan translational motion. If the robot

is allowed to rotate, the problem becomes more complicated. Chew and Kedem have devel

oped a high-clearance motion for a convex polygonal object moving among polygonal obsta

cles in the plane, allowing both rotation and translation [14]. This algorithm takes

(n) logn j time, where / c is the number of edges of the moving object and n is the

number of comers, and edges of the obstacles and is one of the almost-linear functions

related to Davenport-Schinzel sequences. They compute the fi-Voronoi diagram in (jf, y, 0)

space. The Voronoi boundaries will change gradually as 0 changes to generate ruled surfaces.

www.manaraa.com

11

They construct a skeleton which contains all the information necessary to do high-clearance

motion planning. Then any search technique may be used to find the path. No implementation

results are reported in their paper.

2.3 Potential Field Approach

The potential field method is a completely different approach. The idea is to treat the goal

configuration as an "attractive" field and the obstacles as a "repelling" field [15], [29], [32],

[37], [55], [65], [97]. The motion planning is performed by repeatedly computing the most

promising direction of motion, and moving in this direction by some step size. However, it is

a very complex task to choose adequate potential functions and there is no guarantee that a

collision-free path will always be found.

2.4 Network Representation Approach

The network representation approach finds adjacency functions between the objects, and

then uses any search technique to find a collision-free path embedded in the network.

2.4.1 IVanslation

T. S. Ku and B. Ravani use a horizontal slicing technique to construct a connectivity graph

among non-overlapping polygonal objects [43]. Ahrikencheikh et al. also construct a passage

network by slicing the space [1], [2]. One horizontal slicing and its associated passage net

work are given in Figure 2.3. Ahrikencheikh et al. construct a passage network to find the

optimal and conforming motion for a point in a constrained plane. Their algorithm allows

non-convex but non-overlapping obstacles. Obviously, there are no rotation problems in mov

ing a point. They first sort all the vertices according to their descending _y-coordinate order.

Then they slab the FP by the horizontal lines passing through those sorted vertices. The detail

of the algorithm is given below.

www.manaraa.com

12

(a) horizontal slicing

(b) passage network

Figure 2.3. Horizontal slicing and passage network

www.manaraa.com

13

Begin

Step 1: Sort all vertices according to their y-coordinate where the first vertex in the list

has the highest y-coordinate.

Step 2: Initialize the red-black tree to have no edges.

Step 3: Extract the first vertex of sorted list.

Step 4: Add to red-black tree all edge(s) where one end point is the selected vertex,

and other end point has lower y-coordinate.

Step 5: Delete from red-black tree all edge(s) where one end point is the selected ver

tex, and the other end point has higher y-coordinate.

Step 6: Horizontally slice the free space.

Step 7: If all vertices have been selected then stop; otherwise go to Step 3.

Step 8: Construct the passage network.

End

2.4.2 lYansIation and rotation

Ahrikencheikh et al. transform the case of a point moving in a 3 D space with stationary

3D polyhedral obstacles into the problem of a 2D polygon moving among 2D polygonal

obstacles with translations and rotations. First, they build the 3D polyhedral C-space obstacles

by computing the 2D C-space obstacles at different critical angles then connect the adjacent

2D C-space obstacles by 4-edge faces. One orientation subrange [Bp 62] is given in

Figure 2.4. Actually, this method can only compute an approximate 3D polyhedral C-space

obstacle, since the boundary of the polyhedron should be ruled surfaces (see Figure 2.5).

Thus, collisions can still occur if they try to find an optimized path through the edges of the

polyhedron. Next, they construct the passage-network on the convex edges of the polyhe

drons.

www.manaraa.com

14

C-space obstacle

for 02

C-space obstacle
for 01

Figure 2.4. Approximate polyhedral C-space obstacle

Figure 2.5. Polyhedral C-space obstacle

www.manaraa.com

15

The convex edges are the "gates" of the possible passages. Then, they unfold the faces of

the polyhedron to construct the shortest path. The algorithm takes O(n^) time to construct an

optimized path. If there are many obstacles in the environment, this algorithm becomes

extremely complicated and difficult to implement.

2.5 Other Approaches

J. M. Vleugels et al. combine a neural network and deterministic techniques to solve this

problem [94]. The network represents random configurations of the robot and, from this infor

mation, constructs a road map of possible motions in the work space. The algorithm con

structs a network that approximates a Voronoi diagram in configuration space. The only

information required for this algorithm is whether the robot in a particular configuration inter

sects an obstacle. It is easily generalized to higher-dimensional configuration spaces, but there

is no complexity analysis reported.

M. H. Overmars and P. Svestaka use a probabilistic learning approach to solve motion

planning [67]. They split the motion planning process into two phases: the learning phase and

the query phase. In the learning phase they construct a probabilistic roadmap in configuration

space. This roadmap is a graph where nodes correspond to randomly chosen configurations in

free space and edges correspond to simple collision-free motions between the nodes. In the

query phase they use the road map to find paths between different pairs of configurations. This

method can be applied on free flying robots, planar articulated robots, and car-like robots.

Lozano-Perez use a slicing technique to find a path within a 0 rotation range [54]. He

divides the complete range of 0 values into k smaller ranges, approximates the C-space obsta

cles of those ranges, and then projects them onto the x-y plane. These slice projections are the

C-space obstacles of the area swept out by the moving object over the range of orientations of

the slice. Since the swept area under rotation of a polygon is not polygonal, the swept area is

approximated by the union of polygons. Then, visibility graphs are used to find a path.

www.manaraa.com

16

Because the slice projections are approximations of the C-space obstacles, this algorithm is

not guaranteed to find a solution.

H. Martinez-Alfaro uses B-spline and simulated annealing methods to plan collision-free

paths for robots [56]. He models objects with minimum surrounding area or volume ellipsoid

shape. A cost function is developed for the simulated armealing algorithm. The algorithm can

get a smooth path by using B-spIine curves. However, it is slow.

Takahashi and Schilling used heuristic techniques to find a path for moving a rectangle by

generalized Voronoi diagrams (GVD) [89]. Two reference points on the mobile object, corre

sponding to the front and rear wheels of an automobile, trace the shortest GVD path. This

method is also computationally intensive and it only allows rectangular moving objects.

2.6 Conclusion

Some of the algorithms reviewed above are hard to implement when the environment is

complicated, e.g. Voronoi diagram approach, cell decomposition approach, building passage-

networks on 3D polyhedral C-space obstacles, etc. Some of them can not guarantee the exist

ence of a path, e.g. potential fields approach. Some of them have high computational com

plexity, e.g. cell decomposition approach and Voronoi diagram approach. Actually, most

approaches have their own advantages and disadvantages. Thus, the user needs to choose the

approach most suitable for the application.

This study tries to find a fast and easily implementable algorithm to solve the motion plan

ning problem. This work takes the advantage of 2D cases to solve the 3D cases. This not only

simplifies the implementation, but also facilitates efficient computation.

www.manaraa.com

17

3. DATA STRUCTURES

The algorithm requires that no two vertices have the same y-coordinates. Thus, the obsta

cle environment is assumed to be surrounded by a skewed bounding box. The region outside

the bounding box is treated as an obstacle. The edges in such a C-space obstacle are ordered

clockwise. The edges in other C-space obstacles are ordered counterclockwise (see

Figure 3.1). The Target vertices and target edges are the vertices and edges currently under

consideration.

3.1 Edge Information

The edge information of the C-space obstacles is stored in an array einfo, which contains

the fields vtop, vbottom, and object. It contains the information corresponding to the edge's

top vertex, i.e. the vertex with a higher y-coordinate, its bottom vertex, i.e. the vertex with a

lower y-coordinate, and the object which the edge belongs to, respectively. The information

for edge j is stored in the y-th entry of array einfo. The declaration of this structure is:

struct EdgeInfo{

int vtop, vbottom',

int object,

}.

The index of an edge vector is the same as the index of its start vertex. The edges in the

current horizontal slice are stored in eInCurrentSlab. The field of the node in eInCurrentSlab

containing the index of an edge is referred to as eindex.

For example, in Figure 3.1, edge 6 is in object 1 and the two end vertices of edge 6 are ver

tices 6 and 7 and vertex 6 has a higher y-coordinate. Thus, the edge information for edge 6 is:

einfo[6\.vtop = 5; einfo[6].vbottom = 7; einfo[6\.object = I.

Similarly, the edge information for edge 22 is:

www.manaraa.com

18

24
27

\ 9 ^

Iff
n

25
26

Figure 3.1. Intersected C-space obstacles

einfo[22].vtop = 23\ einfo[22].bottom = 22; einfo\22].object = 3.

The information for eInCurrentSlab when the slabbing goes down to vertex 0 is:

26 <=> 6 <=> 10 <=> 24.

The information of the three fields in vinfo are obtained before any slabbing. The informa

tion in eInCurrentSlab are obtained and updated during the slabbing procedure.

3.2 Vertex Classification

The vertices in the configuration space are classified into six types.

1) Up_convex

A vertex is up_convex if and only if the vertex is convex and its two adjacent vertices

both have lower _y-coordinates.

For example, in Figure 3.1, vertices 11 ,0 ,18 , and 12 are "up_convex".

www.manaraa.com

19

2) Down_convex

A vertex is down_convex if and only if the vertex is convex and its two adjacent vertices

both have higher y-coordinates.

For example, in Figure 3.1, vertices 9,3,21, and 16 are "down_convex".

3) Up_concave

A vertex is upjconcave if and only if the vertex is concave and its two adjacent vertices

both have higher y-coordinates.

For example, in Figure 3.1, vertices q, 26, etc. are "up_concave".

4) Down_concave

A vertex is down_concave if and only if the vertex is concave and its two adjacent verti

ces both have lower y-coordinates.

For example, in Figure 3.1, vertices 24, k, etc. are "down_concave".

5) Left

A vertex is left if and only if its front vertex has a lower y-coordinate and its back vertex

has a higher y-coordinate.

For example, in Figure 3.1, vertices 6, 7, r, 19, 20, etc. are "left".

6) Right

A vertex is right if and only if its front vertex has a higher y-coordinate and its back ver

tex has a lower y-coordinate.

For example, in Figure 3.1, vertices 5, 23, 22, j, 10, etc. are "right".

When the target vertex is on the contour and if it is a "down_concave" or "up_concave"

vertex, there is no slice going through it. If the contour vertex is "up_convex" or

"down_convex", there is one slice going from it to its closest right and closest left edges. If the

contour vertex is "left", there is one slice going from it to its closest left edge. If the contour

vertex is "right", the slice goes from it to its closest right edge.

www.manaraa.com

20

3.3 Vertex Information

The algorithm requires that no two vertices have equal y-coordinates, including the verti

ces of the C-space obstacles and the intersections of the C-space obstacles. The information of

the vertices, including the vertices in C-space obstacles and the intersections of the C-space

obstacles, is stored in an array vinfo. Based on the data structure developed by Ahrikencheikh

and Seireg [1], vinfo contains the fields vfront, vback, vlefi, vright, efront, eback, eleft, and eri-

ght which contain the information corresponding to its front vertex, its back vertex, its left

vertex, its right vertex, its front edge, its back edge, its left edge, and its right edge, respec

tively. The "front" and "back" are the relative sequences of the edges or vertices in the C-

space obstacles. The "left" and "right" are the relative positions of the edges or vertices in the

horizontal slicing. Since the C-space obstacles are the "expanded fat obstacles" of the original

obstacles, they might overlap although the real obstacles do not overlap. Besides the above

fields, one more field oncontour is needed, which is a boolean value indicating whether the

target vertex is on the contour or not. The vertex information for vertex j is stored in the y-th

entry of the array vinfo. The declaration of the structure is:

struct Vertexinfo {

int vfront, vback',

int vleft, vright;

int efront, eback',

int eleft, eright;

Boolean oncontour,

} •

If the vertex does not have right vertex, right edge, left vertex, or left edge, the values of

the corresponding fields are set to be -1.

All the vertices in C-space obstacles are sorted by non-increasing ^'-coordinate order and

their indices are inserted in that order into a linked list ylist. The field of the node in ylist con

www.manaraa.com

21

taining the index of a vertex is referred to as vindex.

For example, in Figure 3.1, the vertex information for vertex 21 is:

vinfo[2l].yfront = 22; vinfo[2l].vback = 20;

vinfo[2l].vleft = m; vinfo[2l].vright = n;

vinfo[2l].efront = 21; vinfo[2l].eback = 20;

vinfo[2l].eleft = 16; vinfo[2l].eright = 24;

vinfo{l\].oncontour = TRUE.

The vertex information for vertex 15 is:

vinfo[\5\.vfront = 16; vinfo[l5].vback = 14;

vinfo[\5].vleft = p; vinfo[\5\.vright = -1;

vinfo\\5\.efront = 15; vinfo[\5'\.eback = 14;

vinfo[\5].eleft = 26; vinfo[\.5'\.eright = -1;

vinfo[\5].oncontour = TRUE.

The information in ylist is:

24<=>27<=>ll<=>6<=>0<=>l<=>7<=>5<=>18<=>10<=>23c:>12<f^l3<=>2<=>19

«=> 8 9 <=> 14 <=> 4 <=> 22 <=> 3 <=> 17 <=> 20 o 15 <=> 21 <=> 16 <=> 25 <=> 26

Only vfront, vback, efront, and eback fields are set before the slicing procedure. The

remaining fields are determined when the slabbing procedure is processed.

3.4 Intersection Information

Since the C-space obstacles might intersect, and the slicing lines intersect some edges,

each edge needs a linked list ptonEdge to store its intersection information. The first element

of the list is the highest vertex of the edge, and the last element is its lowest vertex.

Before slabbing the FP, the intersection information in ptonEdge for each edge has only

two elements, one is the top vertex of this edge, and the other one is its bottom vertex. For

example, in Figure 3.1 the intersection information for edge 17 is ptonEdge[\l\. 12 « 17

www.manaraa.com

22

and the intersection information for edge 3 is ptonEdge[3]: 4 <=>3. After the slabbing proce

dure, edge /7 has been determined to have two intersection points, i and j, so the intersection

information for edge //becomes ptonEdge[ll]: 17. The intersection informa

tion for edge 3 becomes ptonEdge[3]: 4 <=> ^ <=>y <=> 3.

3.5 Relative Position of a Vertex to an Edge

For a given edge E with top vertex and bottom vertex (X 2 , y 2) . a given vertex

V (x , y) is in the positive x-direction of £ if the cross product

(x-x2,y-y2) ® (x^-x2,y^-y2) >0.

Vertex v is in the negative x-direction of this edge if

{x-x2,y-y2) ® (x^-x2,y^-y2) <0.

Vertex v is on edge E if

{x-x2,y-y2) ® ix^-x2,y^-y2) =0.

For example, in Figure 3.1 if the current slice is the one passing through vertex 19, die

edges in eInCurrentSlab are 24, 22, 4, 9, 17, 7, 2, 13, and 26. Vertex 19 is in the positive x-

direction of edges 9, 17, 7, 2, 13, and 26, but it is in the negative x-direction of edges 24, 22,

and 4.

www.manaraa.com

23

4. PASSAGE-NETWORK CONSTRUCTION FOR ONE ROTATION

LEVEL

The complement of the area enclosed by the contour in the configuration space is the free

space. Since the passage network is constructed in the free space, the information of the free

space should be determined first (see Figure 4.1). In this chapter, algorithms for finding the

contour of a set of intersected C-space obstacles and constructing the network for a single

rotation level are given.

4.1 Methodology Overview

The passage network construction consists of two major steps:

Begin

Step 1: Find the contour and slice the free space;

Step 2: Construct the passage network for a single level.

End

4.1.1 Contour construction

In this study, the contour of a set of intersected C-space obstacles is constructed by using a

slabbing technique, which takes O ((n + k) N) time, where n is the total number of obstacle

vertices, k is the number of intersections, and N is the number of obstacles, decomposed into

convex objects. The slabbing technique is used instead of Kedem and Sharir's O (nlo^n)

algorithm [35] (as shown in Figure 4.2), for two reasons. First, the slabbing method is simple,

as shown by its extensive use in solving geometric intersection problems [61], [66]. Second,

the passage network construction is based on slabbing, and thus the contour construction can

be conveniently carried out simultaneously. The second reason is that experiments show that

www.manaraa.com

24

Figure 4.1. The contour and the passage network of Figure 3.1

Divide and conquer algorithm for calculation of u AT,. (AT,- is the

C-space obstacle)

Step 1. Calculate and preprocess all the AT^'s.

Step 2. Recursively find G = u AT, and H = u , where
ie g ie h

g = { 1, ..., \ m / 2 \ } , h = {|m/2| + 1, .

Step 3. Find the contour of AT = G u H , using the

Ottmann-Widmeyer-Wood approach [66].

Figure 4.2. Kedem and Sharir's Algorithm for constructing a contour.

www.manaraa.com

25

finding the contours with this method takes less than 1% of the total running time. Thus,

attempting to optimize this step does not pay off.

Some vertices of the contour are from the C-space obstacles, e.g., vertices 11, 6, 7, etc. in

Figure 4.1, while others are from the intersections of the C-space obstacles, e.g., vertices j, k,

etc. The contour may contain several disjoint regions, see, e.g.. Figure 4.3. In order to find all

contour vertices and their adjacency relations, the edges in eInCurrentSlab, the intersection

information in ptonEdge, and the vertex information in vinfo need to be updated during the

slicing.

4.1.2 Free-space slicing

The firee space is divided by the horizontal sweeping lines going through the contour verti

ces to its closest positive and/or negative x-direction obstacle edges. Using the terminology

used by Ahrikencheikh and Seireg [1], the intersections of the sweeping lines and the obstacle

edges are called "secondary" vertices. The vertices of C-space obstacles and the intersections

of the C-space obstacles, which are on the contour, are called "primary" vertices (see

Figure 4.3).

Thus, the free-space slicing procedure can be defined as finding the secondary vertices

associated with their primary vertices. And the gate is the segment corresponding to one pri

mary vertex and one of its secondary vertices. By the hypothesis that no two vertices have

equal ^'-coordinates, each slab can have only one, two, three, or four gates (see Figure 4.4).

The gates are the possible passages for the moving object.

4.1.3 Network construction for a single level

The mid-point of the gate is the node of the network. The network is constructed by con

necting the nodes of adjacent gates together (see Figure 4.1). Such a network is called a "pas

sage network". The x-y distance of the connected nodes is the weight of the link.

www.manaraa.com

26

Figure 4.3. Primary and secondary vertices

Figure 4.4. Gates

www.manaraa.com

27

4.2 C-space Obstacle Construction

The first step of the motion planning algorithm is to find the C-space obstacles.

Let A I A f , b e N convex polygonal obstacles, and let fi be a convex robot. If B is

rotated around the origin by 180°, it is denoted by (see Figure 4.5). The C-space obstacles

are obtained by the Minkowski sum of A,- and [26]:

A - + = { a + b \ a e A„ b e b' ^ } , i = l. . .A^.

The complement of the C-space obstacles is the collision-free configuration space.

One easier way to compute the C-space obstacles is to view each edge of a polygon as a

vector directed counterclockwise around the polygon. Then, the edges of A. + B^ are the

edges in A,- and B^ merged in their slope order (see Figure 4.6). Actually, A. + B^ can also be

obtained by moving the reference point O of B^ around the boundary of A,- (see Figure 4.7).

All vertices in the C-space obstacles are sorted according to non-increasing ^-coordinate

and inserted into the linked list ylist in that order.

4.3 Edge and Vertex Information Setting

After the C-space obstacles have been computed, the information for the edges and verti

ces must be set. Before the slabbing procedure, only vfront, vback, eback, and efront fields of

vinfo and vtop, vbottom, and object fields of einfo are assigned. The information in elnCur-

rentSlab is empty. The information in ptonEdge for each edge is only its top and bottom verti

ces as described in Chapter 3.

All edges and vertices are numbered sequentially. Thus, if the index of the last edge of C-

space obstacle k is /, the first edge of C-space obstacle A:-t-l will be (i+l). The detail of the

algorithm for setting edge and vertex information is described as follows.

www.manaraa.com

28

Figure 4.5. B and

Figure 4.6. Merged in slope order

Figure 4.7. Moves around A,-

www.manaraa.com

29

Algorithm Set_E_V_Info

Begin

1. n = 0; /* the index of the first target edge and target vertex*/

2. for each C-space obstacle c do

3. for each vertex v in c do

4. einfo[n].object = c;

5. vinfo[n].efront = n;

6. if V is the last vertex of c then

7. vinfo[n].vfront = the first vertex ofc;

8. vinfo[n].vback = n - I;

9. vinfo[n].eback = n -1;

10. if the >'-coordinate of vertex n < the y-coordinate of the first vertex of c

11. einfo[n].top - the first vertex of c;

12. einfo[n].bottom = n;

13. else

14. einfo[n].top = n;

15. einfo[n].bottom = the first vertex of c;

16. else

17. vinfo[n].vfront = « + 1;

18. if the ^'-coordinate of vertex n < the y-coordinate of vertex n+1 then

19. einfo[n].top = n + I;

20. einfo[n].bottom = n;

21. else

22. einfo[n].top = n;

23. einfo[n].bottom = n + 1;

24. if V is the first vertex of c then

www.manaraa.com

30

25. vinfo[n].vback = the last vertex of c;

vinfo[ri\.eback = the last edge of c; 26.

27. else

28. vinfo[n].vback = n -1;

vinfo[n].eback = n - V, 29.

30. increment n by 1;

End

4.4 Slicing Procedure

The slicing procedure partitions FP into several triangles or quadrilaterals, each of which

is referred to as a cell. The boundaries of the cells which do not belong to any C-space obsta

cles are the gates. There are at most four gates in one cell. The slicing procedure processes the

elements obtained by merging the vertices of the C-space obstacles with the intersections of

the C-space obstacles by decreasing y-coordinate. The major steps of this procedure is as fol

lows.

Step I. for every vertex v,-, including the vertices in the C-space obstacles and intersec-

End

4.4.1 Updating information

The horizontal slicing procedure slices the FP by non-increasing order of the vertices on

the contour. In what follows, the information that needs to be updated during the slicing is

described.

Begin

tions of the C-space obstacles do

Step 2. if V,- is on the contour then

Step 3. slice FP through v,-;

www.manaraa.com

31

4.4.1.1 Updating the edges in the current slab

For a given target vertex, we examine if there is any edge adjacent to the target vertex and

below the horizontal line which passes through the target vertex. If so, the edge is inserted into

eInCurrentSlab. If there is any edge adjacent to the target vertex and above the horizontal line,

then the edge is deleted from eInCurrentSlab. For example, in Figure 4.8, when the slicing

procedure goes from vertex 7 to vertex 5, since edge 5 is above the horizontal line, which

passes through vertex 5, and edge 4 is below the line, edge 5 is deleted from eInCurrentSlab

and edge 4 is added into eInCurrentSlab. Thus, the information in eInCurrentSlab is updated

from 24 <=> 26 <=> 10 <=> 5 1 <=> 7 to 24 <=> 26 <=> 10 <=> 1 7 <=> 4.

4.4.1.2 Updating the intersection information and vertex information

If the inserted edge intersects any edge currently in eInCurrentSlab, the intersection point

is inserted into a list intlist ordered by non-increasing y-coordinate. For example, in

Figure 4.8, when vertex 7 is the target vertex, edge 7 is inserted into eInCurrentSlab, and it is

determined to intersect with edge / at point a. At this moment intlist has only one element a.

When vertex 18 is the target vertex, edges 18 and 23 are inserted into eInCurrentSlab. Edge

23 is intersected with edge 4 at point b, so point b is inserted into intlist. Since point b has a

higher y-coordinate, the information in intlist becomes b<^a. Once the intersection vertex in

intlist has been the target vertex, this element is deleted from intlist. If an intersection point is

on the contour, FP will be sliced through this intersection point, e.g., points r and j in

Figure 4.10. The intersection information ptonEdge of the two intersected edges and the ver

tex information vinfo about the vertices on the two edges will be updated.

If the intersection point is not on the contour, there is no need to update this information.

Four intersection cases are shown in Figure 4.9. The bold segments in Figure 4.9 are the por

tions on the boundaries of the contour in which the intersection point is on the contour. For

case 1 (resp. case 3) of Figure 4.9, there will be a slice that goes from the intersection point to

www.manaraa.com

32

24 27

14

20

16

'25 26

Figure 4.8. One environment example

top

buttom

\

easel

\ X A \

02

case2 CGse3 case4

©2 e,
\

Figure 4.9. Four intersection cases

www.manaraa.com

33

24

\ 9

20

25
26

Figure 4.10. Intersected C-space obstacles

the closest right (resp. left) edge. Case 2 and case 4 are degenerate cases with no slicing, since

the intersection vertex is concave.

For example, in Figure 4.10, when the slicing procedure goes down to vertex 4, edge 3 is

inserted into eInCurrentSlab and edge 4 is deleted from eInCurrentSlab. Edge 3 is tested for

intersection with edges 19 and 17 at k and j respectively in the current slab, so k and j are

stored in intlist. When the slabbing procedure goes down to point k, point k is tested to deter

mine if it is on the contour. Since point k is on the contour, it is now necessary to determine

what kind of intersection it is, and it is found to be a case 2 intersection. Thus, there is no slice

passing through point k. The front vertex of vertex 3 is then updated from vertex 4 to vertex k,

the back vertex of vertex k is 3, the front vertex of k is 20, and the back vertex of 20 is updated

from 19 to k. The intersect ion information for edge 3 becomes ptonEdge[3]: 4 <=>^<=>3.

After vertex k has been the target vertex, it is deleted from intlist.

www.manaraa.com

34

When the slabbing procedure goes down to point j, point j is tested to determine if it is on

the contour. Since point j is on the contour and it is a case 1 intersection, there is a slice from

vertex j to its closest right edge 19. The front vertex of 17 becomes j, the back vertex of j is 17,

the front vertex of j is k, and the back vertex of k is updated from 3 to j. The intersection infor

mation for edge 3 becomes ptonEdge[3]: 4 ^ kc^j <=>3. Updating all the information for

one target vertex takes only constant time.

4.4.2 Contour finding

Since the C-space obstacles are convex "closed loops", each C-space obstacle in the cur

rent slab contributes two edges to eInCurrentSlab. For example, in Figure 4.10, when the slic

ing procedure goes to vertex 19, the objects in the current slab are objects 0, 1, 2, and 3, and

the edges in eInCurrentSlab are 24 <=> 26 <=> 4 «=> 7 o 9 <=> 22 o 17 <=> 13 <=> 2 <=> 19.

Edges 24 and 26 are from the bounding box, edges 4 and 2 are from object 0, edges 7 and 9

are from object /, edges 17 and 13 are from object 2, and edges 19 and 22 are from object 3.

Thus, if there are objects, there are at most 2A^ edges in eInCurrentSlab.

For a given target vertex in ylist or intlist, and two given edges in eInCurrentSlab which

belong to the same C-space obstacle (9,-. If the target vertex is in the positive jc-direction of

both edges or in the negative jc-direction of both edges, this vertex is outside of O,-. On the

other hand, if the target vertex is in the positive x-direction of one edge and in the negative x-

direction of another edge, this vertex is inside O,-, and thus it is not on the contour.

For example, in Figure 4.10, vertex 79 is in the positive x-direction of edges 7 and 9, so it

is outside of object 1. However, vertex 19 is in the positive x-direction of edge 2, but it is in

the negative jc-direction of edge 4, so vertex 19 is inside object 0. Since vertex 19 is inside

some object, it is not on the contour.

The major steps for testing whether a vertex is on the contour are described as follows.

www.manaraa.com

35

Begin

Step 1. mark the target vertex as "on the contour";

Step 2. for every pair of edges e,- and ej in eInCurrentSlab which belong

to the same C-obstacle do

Step 3. if the target vertex is in the different x-direction of e,- and ej then

Step 4. mark the target vertex as "not on the contour";

End

4.4.2.1 Detail of the contour finding algorithm

If the target vertex is outside of the C-space obstacle of the bounding box, the target venex

is not on the contour either. If the target vertex is on the contour, we need to find its closest

edges for later slicing. The closest edges can be found by the same procedure.

If the target vertex is in the positive x-direction of edge E and edge E belongs to object /,

set obstacle {i\ = P. If the target vertex is in the negative jc-direction of edge E, set

obstacle [/] = A^. If the target vertex is neither in the positive nor in the negative x-direction

of E, it lies on the edge. In the next section, there is more discussion about the situation where

the target vertex lies on some edge.

Procedure isonContour determines whether the target vertex is on the contour and com

putes the closest right and left edges of the target vertex. If the target vertex is not on the con

tour, its closest right and left edges are set to be -1. Procedure isonContour tests all vertices,

including the vertices on the C-space obstacles and the intersections of the C-space obstacles.

Procedure isOnContour

Input: the index of the target vertex, target_vertex\

Begin

1. vinfo[target_vertex].oncontour = TRUE;

2. if target_vertex is outside of the C-space obstacle of the bounding box then

www.manaraa.com

36

3. vinfo[target_vertex] .oncontour = FALSE;

4. stop;

5. for every edge e,- in eInCurrentSlab do

6. if (e,- does not belong to the bounding box) and (target_vertex is not the end vertex of

e,-) and (if target_vertex is an intersection of two edges, e,- is not one of the edges)

then

7. which_obj = einfo[e ̂ .object',

8. if target_vertex is in the positive x-direction of e,- then

9. if obstacle[which_obj] = M then

10. vinfo[target_vertex].oncontour = FAiLSE;

11. closest right edge of target_vertex = -1;

12. closest left edge of target_vertex = -1;

13. stop;

14. else obstacle[which_obj] = f;

15. update the closest left edge of target_vertex\

16. else if target_vertex is in the negative x-direction of e,- then

17. if obstacle[which_obj] — P then

18. vinfo[target_vertex].oncontour = FALSE;

19. closest right edge of target_vertex = -1;

20. closest left edge of target_vertex = -1;

21. stop;

22. else obstacle[which_obj\ = N',

23. update the right closest edge of target_vertex;

24. else /* target_vertex is on e,- */

25. onedge = e,-;

End;

www.manaraa.com

37

Procedure isonContour takes 0{N) time in the worst case to process a target vertex. After

the procedure, those vertices whose oncontour fields are TRUE are the vertices on the con

tour, and they are the "primary" vertices mentioned earlier. The closest right (resp. left) vertex

for a left (resp. right) primary vertex is set to be - I. If the target vertex is found to be on the

contour, FP will be sliced by a horizontal line passing through that vertex to its closest left

and/or closest right edge(s) according to the vertex type.

4.4.2.2 Contour vertex Ivine on some edge

If the contour vertex lies on some edge, it might change the type and the closest right and/

or left edge(s) of this vertex. Since we assume that no two vertices have the same ^'-coordi-

nates, when we consider that the vertex lies on some edge, we cannot have the following

cases: for one primary vertex, it cannot lie on the end vertex of another edge, as shown in

Figure 4.11 (a). The situation is the same for the intersection point (see Figure 4.11 (b)). By

assumption, there is no edge going through the intersection point. If the intersection point lies

on another edge, then two or more intersection points overlap (see Figure 4.11 (c)).

Here, s denotes the start point of the edge on which the target vertex lies, and a is its end

point. The target vertex is denoted by t, its back vertex by b, and its front vertex by c (see

Figure 4.12). Different types of vertices lead to different kinds of situations when the vertex

lies on another edge.

1)Up_convex

If the target is "up_convex", and it lies on some edges, it will be one of the six cases as

described in Figure 4.12.

Case (1) and case (2):

If 5a X > 0 and s a x s o Q , this is case (1) or case (2).

Since the edges of the objects are ordered counterclockwise, even if t lies on edge s a , t i s

still counted as inside the object which owns sa. Thus, vertex t is not on the contour, so its

www.manaraa.com

38

(a) two primary vertices (b) one primary vertex and (c) three intersections

one intersection

Figure 4.11. Overlapping vertices

closest right and left edges are reset to -1.

Case (3):

If 5a X < 0, s a x s c < 0 , and vertex c is in the positive ;c-direction of edge sa, it is case

(3).

Since the edges of the objects are ordered counterclockwise, even if t lies on edge s a , t i s still

counted as outside the object which owns sa. Thus, vertex t is on the contour, and its closest

left edge is updated to edge sa, and its closest right edge is still the one obtained from Proce

dure isOnContour. In this case, the distance between the target vertex t and its closest left edge

is 0.

www.manaraa.com

39

(I) <2)

(3) (4)

<5) <6)

Case (4):

Figure 4.12. Up_convex

I f s a x s b < 0 , s a x s c < 0 , and vertex c is in the negative j:-direction of edge sa, it is case

(4).

In Case (4), vertex t is on the contour as it was in Case (3), except its closest right edge is

updated to edge sa, and its closest left edge is still the one obtained from Procedure isOnCon-

tour. The distance between the target vertex t and its closest right edge is 0.

www.manaraa.com

40

Case (5):

If ja X jfc > 0 and jo x jc < 0, it is case (5).

Since the objects are ordered counterclockwise, in this case, vertex b is inside the object

which owns sa, and vertex c is outside that object. The type of vertex t is updated from

"up_convex" to "left". Thus, its closest right edge is set to -1. The back vertex of t is updated

from b to s, vinfo[i\.vback = s. The front vertex of s is updated from a to t, vinfo[s].vfront = t.

Case (6):

If ja X 5^7 < 0 and x > 0, it is case (6).

Similarly to case (5), in this case the type of vertex t is updated from "up_convex" to

"right". Thus, its closest left edge is set to -1. The front vertex of t is updated from c to a,

vinfo[i\.vfront = a. The back vertex of a is updated from s to t, vinfo[a].vback = t.

2) Down_convex

If the target is "down_convex", and it lies on some edges, there are also six cases as

described in Figure 4.13.

Case (1):

I f s a x s b < 0 , s a x s c < 0 , and vertex c is in the positive jr-direction of edge sa, it is case (1).

Since the edges of the obstacles are ordered counterclockwise, even if t lies on edge sa, t is

still counted as outside the object which owns sa. Thus, vertex t is on the contour, and its clos

est left edge is updated to edge sa.

Case (2):

If 5a X < 0, 5a X jc < 0, and vertex c is in the negative x-direction of edge sa, it is case

(2).

In Case (2), vertex t is on the contour as it was in Case (1), except its closest right edge is

updated to edge sa.

www.manaraa.com

41

a) (E)

(3) C4)

S\ a
b . \ c b A C

(5) C6)

Figure 4.13. Down_convex

Case (3) and case (4):

If 5a X > 0 and s a x s o O , this is case (3) or case (4).

In the two cases, t is counted as inside the object which owns sa. Thus, vertex t is not on

the contour, so its closest right and left edges are reset to -1.

www.manaraa.com

42

Case (5):

If ja X < 0 and 5a x jc > 0, it is case (5).

In this case, the type of vertex t is updated from "down_convex" to "left". Its closest right

edge is reset to be - I. The front vertex of t is updated from c to a, vinfo[t\.vfront = a. The back

vertex of a is updated from s to t, vinfo{d\.vback = t.

Case (6):

If 5a X > 0 and ja x jc < 0, it is case (6).

In this case, the type of vertex t is updated from "down_convex" to "right". Its closest left

edge is set to -1. The back vertex of t is updated from b to s, vinfo[t].vback = s. The front ver

tex of s is updated from a to t, vinfo[s].vfront = t.

3) Left

If the target vertex is "left", and it lies on some edges, there are also six cases as described

in Figure 4.14.

Case (1):

If X56 <0 and ja x5c < 0, i t is case (1) .

In this case, the closest left edge of t is reset to be sa.

Case (2):

If s a x s b > 0 and .ya x 50 0, it is case (2).

In this case, vertex t is determined to be inside the object which owns edge sa. Thus, its

closest left and right edges are reset to -1.

Case(3):

If 5 0 x < 0 , 5 a X 5 c > 0 , and the y -coordinate of vertex / is higher than the y -coordinate

of vertex a, it is case (3).

In this case, the front vertex of t is updated from c to a, vinfo[t].vfront = a. The back vertex

of a is updated from s to t, vinfo[a].vback = t.

www.manaraa.com

43

/to
s. b

CD CE)

(3) <4)

C5) (6)

Case (4):

Figure 4.14. Left

If ja X < 0, X 5c > 0, and the _y-coordinate of vertex t is lower than the _y-coordinate

of vertex a, it is case (4).

In this case, the type of vertex t is updated from "left" to "up_concave". Thus, its closest

left and right edges are updated to -1. The front vertex of t is updated from c to a.

www.manaraa.com

44

vinfo[t].yfront = a. The back vertex of a is updated from s to t, vinfo[a\.vback = t.

Case (5);

If jfl X > 0, 5a X jc < 0, and the 3;-coordinate of vertex t is higher than the ^'-coordinate

of vertex s, it is case (5).

In this case, the type of vertex t is updated from "left" to "down_concave". Thus, its clos

est left and right edges are updated to -1. The back vertex of t is updated from b to s,

vinfo[t\.vback = s. The front vertex of s is updated from a to t, vinfo[s].vfront = t.

Case (6);

If X 5Z7 > 0, 5a X 5c < 0, and the y-coordinate of vertex t is lower than the _y-coordinate

of vertex s, it is case (6).

The back vertex of t is updated from b to s, vinfo[t].vback = s. The front vertex of s is

updated from a to t, vinfo[s].vfront = t.

4) Right

If the target vertex is "right", and it lies on some edges, there are also six cases as

described in Figure 4.15.

Case(l) :

If ja X5fe >0 and 5a x5c> 0, it is case (1).

In this case, vertex t is determined to be inside the object which owns edge sa. Thus, its clos

est right and left edges are set to -1.

Case (2):

If 50 x 5Z7 < 0 and 5a x 5c < 0, it is case (2).

In this case, the closest right edge of t is reset to be sa.

Case(3):

If 5a X 5& < 0 , 5a X 5c> 0, and the y-coordinate of vertex t is higher than the y-coordinate

of vertex a, it is case (3).

www.manaraa.com

45

(1) (2)

c c

C3) (4)

<5) (6)

Figure 4.15. Right

In this case, the type of vertex t is updated from "right" to "down_concave". Thus, its clos

est right and left edges are updated to -1. The front vertex of t is updated from c to a,

vinfo[t\.vfront = a. The back vertex of a is updated from s to t, vinfo[a].vback = t.

Case (4):

If 5a X < 0, 5a X 5c > 0, and the y-coordinate of vertex t is lower than the _y-coordinate

www.manaraa.com

46

of vertex a, it is case (4).

In this case, the front vertex of t is updated from c to a, vinfo[t\.vfront = a. The back vertex

of a is updated from s to t, vinfo[a].vback = t.

Case (5):

If ja X > 0, jct X 5c < 0, and the y-coordinate of vertex t is higher than the _y-coordinate

of vertex s, it is case (5).

The back vertex of t is updated from b to s, vmfo[t\.vback = s. The front vertex of s is

updated from a to t, vinfo[s].vfront = t.

Case (6):

If ja X > 0, 5a X jrc < 0, and the y-coordinate of vertex t is lower than the y-coordinate

of vertex s, it is case (6).

In this case, the type of vertex t is updated from "left" to "up_concave". Thus, its closest

right and left edges are updated to -1. The back vertex of t is updated from b to s,

vinfo[t].vback = s. The front vertex of s is updated from a to t, vinfo[s].vfront = t.

4.4.3 Plane graph

Recall that when the target vertex is on the contour and if it is a "down_concave" or

"up_concave" vertex, there is no slice going through it. If the target vertex is "up_convex" or

"down_convex", there is one slice going from it to its closest right and closest left edges. If the

target vertex is "left", there is one slice going from it to its closest left edge. If the target vertex

is "right", the slice goes from it to its closest right edge.

The graph that describes the adjacency information of the slicing is called plane graph

(see Figure 4.16).

The intersection information and vertex information must also be updated when one slic

ing line intersects with one edge. For example, after the slicing procedure, the edge informa

tion for edge CQ in Figure 4.16 is:

www.manaraa.com

47

e3 0

12,

el4 1̂3
ell 14 e2

10
el

Figure 4.16. Plane-graph

ptonEdgeleg]: 0<=>1<=»2<=»3«: :>4<=>5<=>6<=>7<=>8<=>9<=>10.

The vertex information for vertex 11 is:

vinfo[ll].vfront = 13; vinfo[ll].vback = 14;

vinfo[ll].efront = ejj; vinfo[ll].eback =

vinfo[ll].eleft = ej; vinfo[ll].eright = eg;

vinfo[ll].vleft = 12; vinfo[ll].vright = 5.

www.manaraa.com

48

4.4.4 Detail of the slicing algorithm

This section gives more detail about the slicing algorithm. Procedure ContourSlice

describes the information update when a slice going through a contour vertex.

Procedure ContourSlice

Input: target_vertex'.

Begin

1. if target_vertex is an intersection point then

2. Update the intersection information (the information in pionEdge) for the two

edges, which intersect at target_vertex, according to the intersection cases (see

Figure 4.9);

3. Update the vertex information (front and back information) for target_vertex and

its neighbors;

4. Draw a horizontal line passing through target_vertex to its closest left and (or) right

edge(s) according to the vertex type of target_vertex\

5. Update the intersection information (the information in ptonEdge) of target_vertex's

closest edge(s), which the slicing line intersects with;

6. Update the vertex information (left and right information) for target_vertex and the

intersection(s) of the slicing line and target_venex's closest edge(s).

End

Since each update just takes constant time, procedure ContourSlice takes constant time.

The slabbing procedure proceeds according to non-increasing y-coordinate order of the

merge of ylist and intlist. The whole horizontal slicing procedure is described as follows.

Procedure Hslice

Begin

1. for every vertex v,- in ylist do

www.manaraa.com

49

2. if any edge adjacent to v,- is below the horizontal line, which passes through v,- then

3. insert the edge into eInCurrentSlab;

4. if there are intersections between the inserted edge and the edges in

eInCurrentSlab then

5. insert the intersections into intlisf,

6. if any edge adjacent to v,- is above the horizontal line, which passes through v,- then

7. delete the edge from eInCurrentSlab-,

8. While {intlist ^ 0 and the y-coord. of the first element fvint of intlist is >= the y-

coord. of V,) do

9. if isOnContour(/v//zO then

10. ContourSIice(/vmO;

11. Delete fvint from intUsf,

12. if isOnContour(v,) then

13. ContourSIice(v,);

End;

If the C-space obstacles do not intersect, the edges in eInCurrentSlab can be stored in a

red-black tree structure to save computational time [1]. However, the edges in eInCurrentSlab

may intersect, so they are just stored in a linked list here. Step 3 takes constant time to insert

an edge but step 7 takes 0{N) time to delete an edge, so the total execution time for step 7 is

O {nN) , since step 1 is repeated n times. It takes 0{N) time to find the intersections between

each inserted edge and the edges in eInCurrentSlab. If there are any intersections, they are

inserted into intlist by non-increasing _y-coordinate. Since the total number of intersections is

k, there will be 0{k) elements in intlist at any time. If the elements in intlist are stored in a red-

black tree, step 5 will take 0(log/:) time for each insertion, for a total of (9(A:logit) time.

Because k is bounded by N', this is 0{k\o%N). Steps 9 and 10 take a total of 0(JcN) time. Step

www.manaraa.com

50

11 takes Oik logN) time. Steps 12 and 13 take 0{nN) time. Summing up all the time bounds,

we see that procedure Hslice takes 0{{n+k)N) time.

4.5 Network Construction for a Single Level

The passage network for one orientation is constructed by connecting the mid-points of

the adjacent gates, which are the nodes of the network, as described by Ahrikencheikh and

Seireg [1].

The network construction procedure for a single level is called NetworkperLevel. Unlike

the Ahrikencheikh and Seireg algorithm, we have no extra slices passing through the start and

goal configurations. Instead, the start and goal configurations are connected to the nodes of the

cell in which they are located (see Figure 4.1).

The major steps for this procedure are:

Begin

Step 1: Create the nodes of the passage network;

Step 2: Connect the nodes of the adjacent gates to each other;

End

4.5.1 Data structures

The nodes of the network are stored in an array netnode[i]\j], where i is the level of this

node, and j is the index of this node at level i. The data structure is:

struct Net{

int color,

int vleft, vright;

int nodeid\

int levet,

int motion;

www.manaraa.com

51

float dist\

Net* parent',

Netlist* next-,

} •

The field color is a flag to indicate if this node has been searched or not while we do the

network searching. If color is 0, that means it is still unsearched. If color is 1, that means it has

been searched. The fields vleft and vright are the left and right vertices of this node. The field

nodeid is the index of this node in array netnode, which is the same as the index of the right

vertex, stored in vinfo, of this node. The field level is the rotation level of this orientation in

3D network. The field motion indicates the motion of this robot, 1 meaning the motion of this

robot from the target node to its parent node is translation first then rotation, and 0 meaning

rotation first then translation. The field dist stores the distance between this node and the

source node, and the initial value of dist for each node is -1. The field parent stores the parent

node of the target node. Each node has only one parent, so after the network searching, we can

just follow the parent pointers to find the final route. The pointer next is a linked list with

Netlisi data type that stores all adjacent nodes of this target node. The target node is called

center node with respect to its adjacent nodes. The data structure for the linked list Netlist is:

struct Netlist {

int nodeid',

int level,

int motion;

float weight;

Netlist* next;

} •

The field nodeid is the index of this adjacent node. The field level is the level of this node.

The field motion indicates the motion of this robot, 1 meaning the motion of this robot from

www.manaraa.com

52

the center node to this adjacent node is translation first then rotation, and 0 meaning rotation

first then translation. If the two nodes are at the same rotation level, then the field motion is

ignored. This will be described in more detail in the next chapter. The field weight stores the

distance between the center node and its adjacent node. The pointer next points to the next

adjacent node of the center node.

Figure 4.17 shows the relationship between the node and its adjacent nodes, where ptrl to

ptm are the adjacent nodes of node netnode[i][j]. The upper half of the box is the data type of

the node. For example, in Figure 4.18, suppose the parent of node /i; of level / is node of

level /-I, and the distance between node nj of level i to the source node is 93.5, and node «/ of

level i has been searched, then information for node of level i is:

netnode[i][l].color = 1; netnode[i][l].vleft = 4\

netnode[i][l].right = 1; netnode[i][l].nodeid = 1;

netnode[i][{].level = /; netnode[i][l].motion = 0;

netnode[i][l].dist = 93.5; netnode[i][l]->parent = netnode{i-\][y\.

The pointer next points to a linked list with a Netlist data type which stores the adjacent

nodes of netnode[i][]\. Since node of level i has six adjacent nodes, its next field is:

Net

ne-tnodeCiJC J]

(center node)

next

Netlist

ptrl

Netlist

ptr2

(adjacent nodes)

Netlist

ptrn

Figure 4.17. Netlist

www.manaraa.com

53

Level i+1

VI

V4

Level

Level i— 1

Figure 4.18. Three adjacent levels

netnode[i\[\]->next = ptr[->ptr2->... ->ptr6.

The nodes from ptr\ to ptr6 are with Netlist data type. Suppose ptr\ is node /jj of level

/+1, and the distance between node nj of level Z+l and node rij of level i is 10.3, the informa

tion for ptr\ is:

ptrlModeid = 3; ptrl.level = /+I;

ptrl.motion = 0; ptrl.weight = 10.3;

www.manaraa.com

54

ptr\->next = ptrl'.

Similar data structures are for nodes ptrl to ptm.

4.5.2 Network construction

Since we construct the network for each single level first, some fields in netnode are not

set until the whole 3D network is constructed.

For both primary and secondary vertices, those with left vertices (or right vertices) must

have an associated gate. The vertices that have no left vertices (or right vertices) are the

down_concave vertices, or up_concave vertices, so they do not have associated gates. We

chose to find the network nodes by scanning vertices that are left vertices.

The network construction for one single level is described as follows.

Procedure NetworkperLevel

Begin

1. for every vertex i (including primary and secondary vertices) in level Iv do

2. if vertex i has a left vertex vlft then /* create the nodes of the network */

3. node i of level Iv = the mid-point of vertex i and vertex vlft-,

4. netnode[lv][i\.color = 0; netnode[lv][i].level = Iv;

5. netnode[lv][i].nodeid = /; netnode[lv][i\.parent = NULL;

6. netnode[lv][i\.vleft = vlft; netnode[lv][i].vright = i;

1. netnode[lv\{i].dist = -1; /* initial value */

8. for every node nd in level Iv do

9. find every adjacent node adjnd of nd do

10. create a pointer ptr with Net list data type;

11. ptr->nodeid = adjnd; ptr->level = Iv;

12. ptr->weight = the distance between adjnd and nd;

13. insert pointer ptr into the linked list pointed by netnode[lv][i\->next;

www.manaraa.com

55

End

Since all C-space obstacles are closed convex sets, there are only 0{N) non-convex cor

ners on the contour [78]. That is, there are 0{N) intersections on the contour. Hence, the total

number of vertices on the boundaries of the contour is (9(n). Thus, procedure Networkper-

Level only takes 0{n) time, since it simply goes through the vertices of the contour and con

nects the adjacent nodes into a network. In Figure 4.1, the passage network is shown with bold

links; the dark circles are the nodes of the network.

www.manaraa.com

56

5. 3D PASSAGE NETWORK CONSTRUCTION

The shape of the C-space obstacles changes with the rotation angle of the moving object.

Figure 5.1 shows three configuration spaces in three different robot orientations. Since the

robot has been shrunken to a point, the dotted triangle in Figure 5.1 is included to indicate the

orientations of the robot. When the robot is at 0° orientation, the C-space obstacles are dis

joint. However, when the robot rotates 45°, some of the C-space obstacles overlap. When the

robot rotates 90°, the overlapped C-space obstacles separate again. Our approach is to con

struct snapshots of the rotation levels for different rotation angles, and to link the levels via

proper rotation links.

In the previous chapter, we have shown how to construct the network for a single rotation

level. This chapter will describe how to connect those 2D networks into a 3D network and

find a motion path for the robot. The major steps of this algorithm are given below.

Begin

Step 1: Connect the nodes in each level to the nodes of the adjacent levels by the proper

rotation links. /* construct the 3D network */

Step 2: Search for the shortest path in the 3D network.

Step 3: Project the shortest path onto x-y plane.

End

5.1 Proper Rotation Links

If the reference point of the robot is placed at point Pj at orientation 0, the position of the

robot is denoted as Pj (0) . The free space for a given 0 is denoted by FP (Q) . We separate

the motions of translation and rotation. Thus, if the robot rotates from 0, to 0^, its reference

is fixed at the same point. This is denoted by P, (0|) P—> P^ (G2) , where Pi is the locat-

www.manaraa.com

57

Figure 5.1. Multiple configuration spaces

ion of the reference point. The purely translational motion from Pj to P2 at level 0-, is denoted

as P, (Bj) T-^ P2 (69). If the robot rotates from 9, to 02 at position P, then translates

to Pj, the motion is denoted as P, (0,) R-^P^ (B,) r-> P2(02) • If the motion is

reversible, the symbol" <-> " is used.

Given adjacent levels 0j and 02, if the orientation interval is small enough, and suppos

ing P is in both FP (0j) and FP (0^) from the top view, then the robot will have a collision

www.manaraa.com

58

free motion PCG,) P (02)- However, if P is in FP(0,) but not in FPCGj), that

means after the robot rotates from 0 j to ©2, position P will be inside some C-space obstacle.

Thus, there will be collision if the robot has a motion /"(Oj) —> R—> P (02).

Figure 5.2 shows two adjacent rotation levels 0. and 0^.,^ j. If the two levels are projected

onto the x-y plane. Pi is determined to be in the collision-free cell V1V2V3V4 of level 0^.^ , (see

Figure 5.2 (b)). This means that if the robot is placed at Pj, it will have a collision-free rota

tion from 0. to 0-^,, and the robot can move from P, (9. ,) to P, (0. ,) or P, (0. ,)

without any collision after the rotation.

The motion that rotates the robot from 0^. to 0^-^, about Pj and then translates it to

another place P2 is referred to as an RT motion, and the link connecting P| (0^ and

P9 (0/ +]) is referred to as an RT link. If the motion translates the robot first and then rotates

it, the motion is referred to as a TP motion and the link a TR link. Notice that RT links and TR

links are directed. If Pj (0^ to ^2 ^ motion, there is no guarantee that there is

a collision-free RT motion from + however, the reverse step, the TR

motion from P, (9, + [) (0,) • is safe. For example, in Figure 5.2, since Pj has been

determined to be in one collision-free cell of level 0, .,.,, it will be joined via RT links to the

nodes of cell V1V2V3V4, P2(0, + 1) and P3(0, +1). However, P2(0, + 1) and P3(0,-+ ,) will link

to Pi(0,) with TR links. If we link 1) to ^i(0,) by an RT link, it will have collision

because P2 is not in the free space of level 0^.. However, the motions /"i (0,) R

^l (0 ,+ l) ^ ^2 1^ ' ^2 1^ ^

both collision-free.

www.manaraa.com

59

Level ©

\

Level 0. \ /

Level © .^.

V .

V,

Level © . \ //

(a) two adjacent levels (b) projection of the two levels onto the x-

y plane

Figure 5.2. Proper rotation links

5.2 3D Network Construction

Now, we need to find if there is any cell at the adjacent layers which contain the target

node. If there exists such cell, the target node will be linked to the nodes on the cell.

5.2.1 Cell finding

For any primary vertex, except for the "up_concave" vertex, there must be one or two cells

just below the horizontal line, which passes through the primary vertex.

For example, in Figure 5.3, all the primary vertices are numbered by the Arabic numbers,

www.manaraa.com

60

m

18

Figure 5.3. Cell finding

and some of the secondary vertices are numbered by letters. If the vertex is a "down_concave"

vertex, e.g., vertex 5, there is only one cell below it. It is a triangular cell 6e7. Vertex e is the

back vertex of vertex 6, and vertex 7 is the front vertex of vertex 6. Vertex e is the left vertex

of vertex 7, and vertex 7 is the right vertex of vertex e. Thus, the location of cell 6e7 can be

defined.

If the primary vertex is a "down_convex" vertex, e.g., vertex 7 in Figure 5.3, there will be

a quadrilateral cell leJy just below it. Vertex i is the right vertex of vertex 7, and vertex e is the

left vertex of vertex 7. Vertex j is the front vertex of vertex /, and vertex 5 is the back vertex of

www.manaraa.com

61

vertex e.

If the primary vertex is a "up_convex" vertex, e.g., vertex 0 and vertex 2 in Figure 5.3,

there will be two cells below it. For vertex 0, there are two quadrilateral cells, a09b and

Ocl3d. For vertex 2 there is one quadrilateral cell and one triangular cell, 2kg3 and mil.

Those cells can also be traced by the vertex information stored in vinfo.

Similarly, the cell below a right or left primary vertex can be found by the same data struc

ture.

5.2.2 3D network algorithm

If the motion field in one adjacent node of a center node is 0, that means it is a RT link

from the center node to this adjacent node. If the motion field is 1, it is a TR link. The proce

dure for constructing the 3D network is as follows.

Procedure Construct3DNetwork

Begin

1. for every rotation level i do

2. for every node p on the passage network of the given level i do

3. if there is any cell g in level i + 1 which contains n then

4. for every node m on cell g do

5. /* Link node p with node w by an RT link (node p is the center node) */

6. create a pointer ptr with Netlist data type;

7. ptr->nodeid = m; ptr->level = /+l; ptr->motion = 0;

8. ptr->weight = the x-y distance between p and m;

9. insert ptr into the linked list pointed by netnode[i][p]->next;

10. /* Link node m with node p hy a TR link (node m is the center node) */

11. create a pointer ptr with Netlist data type;

12. ptr->nodeid = p\ ptr->level = /; ptr->motion = l\

www.manaraa.com

62

13. ptr->weight = the x-y distance between p and m;

14. insert ptr into the linked list pointed by netnode[i+\][m]->next\

15. (repeat steps 3 - step 14 for level i - 1 instead of level i + 1);

End;

Since there are 0(/z) nodes at each orientation level, step 2 will be repeated 0[n) times.

Step 3 is a point location problem, and it can be done by two binary searches. The first search

finds the vertical location in O (logn) time, since there are 0(n) slabs in the FP. The second

search finds the horizontal location in O (logiV) time, since there are 0{N) cells in one slab.

Thus, step 3 will take O (logn) time for each target node. Since there are at most four gates

for each cell, steps 5 and 14 take constant time. The execution time for step 15 is the same as

that of steps 3 through 14. If the rotation interval is 5, there will be 7c/5 levels; let c = 7c/5.

Thus, the total execution time for procedure ConstructsDNetwork is O (c/ilogn) .

5.3 Motion Planning Algorithm

We use Dijkstra's algorithm [16] technique to search the 3D network to find the shortest

path. The whole motion planning algorithm is described as follows.

Algorithm Motion-Planning

Begin

1. for every rotation level i do

2. Find the C-space obstacles;

3. Set_E_V_Info();

4. Sort the vertices in C-space obstacles by non-increasing y coordinate and put them

in ylisf,

5. HsliceQ;

6. NetworkperLevelO;

7. Construct3DNetwork();

www.manaraa.com

63

8. Search for the shortest path by Dijkstra's algorithm;

9. Project the path onto the x-y plane;

End;

If the moving object has 0(1) vertices, step 2 of Algorithm Motion-planning will take 0(n)

time to build the C-space obstacles for each level. It takes constant time to obtain the vertex

and edge information for each vertex and edge, so steps 3 takes 0(n) time per level. Step 4

takes O («logn) time to sort n vertices. Step 5 takes Oi(n + k)N) time, and step 6 takes

O (n) time. Thus, steps 1 through 6 take a total of O (c {{n + k) N + nlogn)) time. Step 7

takes 0 (c/ilogn) time. The number of links originating at each node in a 3D network is at

most fourteen: four connect to the previous level, four connect to the next level, and another

six links connect to the nodes at the same level. Thus, there are 0(cn) links in a 3D network,

so it takes 0(c/i) time to search. Step 9 takes 0(cn) time to project the path onto the x-y plane.

Thus , t he to t a l r unn ing t ime fo r A lgo r i t hm Mot ion -P lann ing i s O {c { {n + k) N + n \ogn)) .

www.manaraa.com

64

6. RESULTS AND CONCLUSIONS

This chapter will show the implementation results and the comparisons with other path

planners. Some conclusions and discussions are also given.

6.1 Implementation and Comparisons

The algorithm has been implemented in C-h- on a Silicon Graphics workstation using

Open Inventor for graphics display and Xt/Motif for the graphical user interface. Figure 6.1

(a) shows an obstacle environment with a rectangular robot at the center. Figure 6.1 (b) is the

top view of the 3D network. Figure 6.1 (c) is a close-up side view of the 3D network.

Figure 6.1 (d) shows the final collision-free path projected onto the x-y plane. In Figure 6.2,

six environments taken from the literature are shown. Table 6.1 compares this work with the

planners developed by Zhu and Latombe (ZL) [102], Barbehenn and Hutchinson (BH) [5],

and Vleugels et al. (VKO) [94]. Execution times are affected by different implementations,

machines, and experimental conditions.

ZL and BH use the hierarchical approximate cell decomposition approach. The main step

of that approach is recursively decomposing the 3D MIXED cells in {x,y, 0). Unlike their

approach, the cells generated by our path planner are all 2D EMPTY cells. Thus, we do not

need the complicated procedure to recursively decompose the cells. Vleugels et al. [94] use a

neural network and deterministic technique to solve the problem. They obtain the times by

averaging over 100 runs of their program. Although their results seem good, the variation

between the best result and the worst result is very large. Also, choosing the "adequate learn

ing parameters" for each environment is important to obtain the best results.

www.manaraa.com

65

(a) input environment

Figure 6.1. One implementation example

www.manaraa.com

(b) top view of the 3D network

Figure 6.1. (continued)

www.manaraa.com

67

(c) side view of the 3D network

Figure 6.1. One implementation example (continued)

www.manaraa.com

68

J

(d) final route

Figure 6.1. (continued)

www.manaraa.com

(a) example 1

Figure 6.2. Six environments

www.manaraa.com

70

(b) example 2

Figure 6.2. (continued)

www.manaraa.com

71

(c) example 3

Figure 6.2. (continued)

www.manaraa.com

72

(d) example 4

Figure 6.2. (continued)

www.manaraa.com

(e) example 5

Figure 6.2. (continued)

www.manaraa.com

(f) example 6

Figure 6.2. (continued)

www.manaraa.com

75

Table 6.1 Comparisons of the six examples

ZL [102] BH [5] VKO [94] Chen

Machines Apple
Macintosh
n

SUN IPC SGI Indigo
R3000
33MHz

SGI Indigo
R3000
33MHz

Languages Allegro
Common
Lisp

Lucid
Common
Lisp (vl.3)

C/C++ C++, Xt/
Motif
Open
Inventor

CPU time(mm)

I 0.6 1.2 N/A 0.012

2 2.5 8.1 N/A 0.059
C/3 U
a. 3 5.5 6.5 N/A 0.034
E ca X o

4 5.0 4.5 N/A 0.024
E ca X o

5 N/A N/A 0.083 0.028

6 N/A N/A 0.078 0.035

6.2 Conclusions and Discussions

Algorithms for collision-free path planning have become quite valuable in a variety of

applications such as robotics, virtual prototyping, assembly planning, and computer graphics.

Applied computational geometry also plays an important role in many fields such as medi

cine, drug design, manufacmring design, feature design, IC board routing design, geography

problems, etc.

In this study, an 0(c((n + A:)A^-i-/ilog;i)) time algorithm is presented for planning a

heuristic shortest path. A slabbing technique is used to find the contour of a set of intersected

C-space obstacles and a passage network for each rotation level. Successive orientation levels

www.manaraa.com

76

are connected by the proper rotation links to construct a directed 3D network. Then, Dijkstra's

algorithm is used to find the shortest path in the 3D network. Finally, the path is projected onto

x-y plane. This algorithm is straight-forward and easy to implement.

This algorithm has several contributions. First, it incorporates robot rotation and transla

tion. Secondly, it allows intersected C-space obstacles and calculates the contour of the inter

sected C-space obstacles efficiently. Then, it combines slabbing technique and network

searching. Experiments show that this approach is significantly faster and simpler than other

approaches.

One question that arises here is whether this path planner can always find a collision-free

path if such a path exists. We would like to determine it is true or false.

The robot in this study is called a "free flying" robot. That means the robot can rotate and

translate freely in the plane among a set of obstacles. Another kind of robot is called a "car

like" robot. The motions of the car-like robot have certain non-holonomic constraints, i.e.,

non-integrable kinematic constraints [6], [22], [23], [24], [33], [46], [47], [48], [49], [59],

[67], [72], [81], [82], [83], [88], [91], [98] and are therefore more difficult. Modification of the

path planner developed here to adapt to the constraints of car-like robots is another interesting

research topic.

www.manaraa.com

77

APPENDIX. EXACT DESCRIPTION OF THE B-VORONOI DIAGRAM

OF A HOMOTHETIC ROBOT MOVING THROUGH

TWO OBSTACLES

This Appendix presents a simple 0(n) time algorithm to move a homothetic robot, i.e., a

scaled and translated copy of a 2D robot, through two polygonal obstacles along its 5-Voronoi

diagram, where n is the total number of edges. The 5-Voronoi diagram represents a locus of

robot path points from which it can expand or contract to touch the two obstacles simulta

neously. The algorithm actually computes the feasible locus, that is, a description of the set of

all turning points of the polygonal path.

A.l Introduction

Motion planning is a fundamental problem in robotics. In general, the goal is to find a col

lision free path for a robot amidst obstacles. While there have been several important theoreti

cal algorithmic results in the field, many of the procedures developed so far are difficult to

implement. Here, a linear time algorithm is presented to find the exact description of the high

clearance locus for a homothetic robot moving through two obstacles. This algorithm plays an

important role in an 0(n \o%N) time algorithm by Leven and Sharir [52] for planning a purely

translational motion of a convex object among a set of polygonal obstacles in two-dimen-

sional space, where n is the number of obstacle comers and N is the number of obstacles.

Motion planning problems can often be reduced to finding a high-clearance path in a

Voronoi diagram. Voronoi diagrams partition the plane into several regions called Voronoi

cells. Each cell is associated with a unique closest point or object of a given set of obstacles,

so the Voronoi diagram is the locus which is equidistant to at least two obstacles.

If the obstacles are points in a plane, the standard Voronoi diagram of those points parti

www.manaraa.com

78

tions the plane into several convex polygonal regions (see Fig. A.l (a)). When the moving

object is a disc, the diagram is the locus of the centers of all maximal circumscribed circles,

and the partitions of the plane will be smooth curves (see Fig. A. 1 (b)). If the moving object

and the obstacles are polygons, and we use the convex distance function mentioned in [52] to

define the distance, then the partitions of the plane will be polygonal arcs (see Fig. A. 1 (c)),

and the Voronoi diagram of those polygons is called the B-Voronoi diagram.

Since the objects in this Appendix are two polygonal obstacles and a polygonal robot, the

Voronoi diagram we consider is a polygonal arc, composed of several segments. The intersec

tions between segments are called turning points. This algorithm first finds the turning points

between segments. The 5-Voronoi diagram is then obtained by connecting these tuming

points. In this Appendix, three questions are addressed. First, how to find the first tuming

point; e.g., point ry in Figure A.l (c). Second, how to find the points between the first one and

the last one. Finally, how to find the last tuming point; e.g., in Figure A. I (c).

Section 2 reviews the 5-Voronoi diagram. Section 3 gives the procedures to find the tum

ing points, and section 4 presents some conclusions.

A.2 Definitions

A.2.1 Voronoi diagram

Let 5 be a convex robot, and let O be a reference point inside B. If 0 lies at the origin, the

position of B is called standard position, and it is denoted by Bg. If B is scaled by a factor X

when it is at the standard position, it is denoted by XB^.

In [52], the B-distance from a point /? to a point q is defined by

dgiP' = inf{X: qe p + XB^ }.

www.manaraa.com

79

B

(a) obstacles are points (b) moving object is a disc (c) moving object is a

polygon

Figure A.l. Voronoi Diagrams

Informally, d g (p , q) is the smallest scaling factor X such that when the reference point O o i B

is on point p, XBg just touches q. Similarly the 5-distance from a point p to an obstacle 5,- is

defined as

dgip. Si) = inf{ X: p + XBQ n 5- 0 },

so there exists a point y 6 such that when X = dgip, 5,) and the reference point O is on p,

XBg touches 5/. Point y is called the B-closest point on S,- to B. The set of all points whose B-

distance to Si is less than or equal to the fl-distance to Sj for i j is defined as

j) = [p e E ^ : d g (p , S .) < d g (p, S j) } .

The B-Voronoi cell with respect to 5,- is defined as

Cb(5,)=

www.manaraa.com

80

Thus, the fi-Voronoi diagram is defined to be the set of points which belong to more than one

fi-Voronoi cell.

In order to avoid degenerate configurations, we assume the obstacles and B are in general

position [52], i.e., we assume that no boundary edge of B is parallel to the boundary edge of

any obstacle or to a line joining a pair of boundary comers of these obstacles. This assumption

prevents 5-Voronoi segments from degenerating into general two-dimensional regions. An

example is of a degeneracy shown in Figure A.2. Edge e of polygon B is parallel to ab. The

dotted triangles are some XB^ that touch the two obstacles simultaneously and the shaded area

is a degenerate two-dimensional area of the 5-Voronoi diagram.

As long as the scaling factor X is greater than one, we can move the robot along the B-

Voronoi diagram without collision, and it can be used to plan high-clearance motion for any

object that is similar to B. In other words, if there are two similar robots with different sizes,

only one j5-Voronoi diagram needs to be computed to do the motion planning for both robots.

— /

Figure A.2. 2D B-Voronoi Diagram

www.manaraa.com

81

A.2.2 Data structures

Edges in tiie objects are represented by vectors. The edge vectors for obstacles Sj and S2

are listed in counterclockwise order, while the edges for the robot B are ordered in clockwise

order. Suppose the two outer supporting lines of 5/ and S2 are sp/ and sp2. The two supporting

lines and the two obstacles form a closed region. The list of edge vectors which belong to S/

(resp. S2) in the closed region is called Cj (resp. C2) (see Fig. A.3 (a)).

The direction of s p y (resp. s p 2) is the same as that of the ray shooting from the start point

of Cy (resp. C2) to the end point of C2 (resp. Cj). The two outer supporting lines can be found

in time proportional to the total number of vertices of 5/ and S2 [68]. We will suppose spi is

closer to B than sp2.

A.2.3 Preliminary observations

Observation A.2.1: When XBg touches S; and S2 simultaneously, the two contact points on 5/

and $2 lie on Cy and C2 respectively.

Leven and Sharir [52] have shown that the turning points correspond to configurations where

one vertex of B touches one vertex of S'y or 82- In Figure A.4 we can see that the scaling factor

for moving B from the position where V2 touches vertex a until it touches vertex is a contin

uous decreasing linear function. Similarly, if B is continuously enlarged and moved from the

configuration where V2 touches vertex b until it touches vertex c, the scaling factor is another

linear function.

The turning point occurs at the intersection of the two lines, i.e. when vertex V2 of XBg

touches vertex b of the obstacle. We take this as an observation.

www.manaraa.com

82

SP, 5d

(a) input Vectors (b) sorted vectors

Figure A.3. Vectors in the objects

Figure A.4. Turning Point

www.manaraa.com

83

Observation A.2.2: When one vertex of XBg touches a vertex of 5/ or S2, there is a turning

point of the fl-Voronoi diagram.

Two objects are said to have a W contact if one vertex of an object touches one vertex of

another object. An EV contact is one where an edge of an object touches a vertex of another

object. Similarly, a VE contact is one where a vertex of an object touches an edge of another

object.

Lemma A.2.1: If is on the right-hand side of spi and moved along the iB-Voronoi diagram

from infinity towards the first turning point r/, the same two consecutive edges of B, say e*-

and simultaneously and constantly touch 5/ and S2 (see Fig. A.l (c)).

Proof: We know that the turning point tj corresponds to a VV contact between one vertex of B

and one vertex of 5/ or 82- Suppose edges e,- and ej of XB^ touch S/ and S2 and are not consec

utive when XBQ moves along the 5-Voronoi diagram from some point p (a point lying between

infinity and tf) to tf. Therefore, there exists one edge ei^ of "kBg, lying between e,- and ep that is

between Sj and S2, so that if XB^ is moved from infinity to p, a certain scaling of ej. will touch

Sjor S2 before e,- or ej touches Sj or S2. Edge e/^ makes a VV contact before arrives tj, so

tj is not the first turning point, which contradicts the assumption. •

In Lemma A.2.1, the vertex v*- between e*j and e*/+/ is referred to as a blocking vertex.

Lemma A.2.2: If XB^ is on the right-hand side of sp2 and moved along the fi-Voronoi diagram

from infinity towards the last tuming point tj., the same two consecutive edges of B, say e*j

and e*y+/, simultaneously and constantly touch S; and S2 (see Fig. A.l (c)).

Proof: Similar to the proof of Lemma A.2.1.

www.manaraa.com

84

Observation A.2.3: From Lemma A.2.1 it is easy to see that when the reference point O of

lies between f/ and infinity, spi cuts a triangle from polygon "kBg and the edge vectors of the

triangle are spj, e*-, and £*•+/- (see Fig. A.5)

A.3 Finding the Ibrning Points

The segments of the 5-Voronoi diagram can be classified into three groups. The first one

consists of the ray shooting from the first turning point to infinity. The second group contains

the segments between the first and the last turning points. The third group consists of the ray

shooting from the last turning point to infinity.

A.3.1 Finding the first turning point

We denote by v;^ the vertex of XBg corresponding to vertex v e 5. The first step to find the

5-Voronoi diagram is to identify the blocking vertex v*,-. The following Lemma gives us an

easy way to find vertex v*,-. Let e*- and be the two edges adjacent to v*-.

Lemma A.3.1: The two consecutive vectors e*- and e*,+/ are the pair of consecutive edge vec

tors in B with the property that the slope of e*- is less than the slope of spj and the slope of

e * i +] i s g r e a t e r t h a n t h e s l o p e o f s p j .

Proof: From Lemma A.2.1 and Observation A.2.3, we know that vector spj is the tangent vec

tor of V*-, so the slope of spi is between the slope of e*- and e*+y. •

From Lemma A.3.1, we can see that vertex v*- can be found in time linear in the number of

edges in B.

Observation A.3.1: Suppose v*- is the blocking vertex between Sj and 82- Then there are three

www.manaraa.com

85

cases (see Fig. A.5). Case 1: does not touch 5/ nor S2- Case 2: touches Sj. Case 3:

touches S2-

Sort the vectors in Cy, C2, the vectors in B , and the supporting vectors s p j and sp2, by the

slope order. Put the sorted vectors in a unit circle (see Fig. A.3 (b)). The sorted vectors of

sp^ u sp2 u C, (resp. sp^ u sp^ u C2) in the unit circle which are adjacent to e*- (resp.

e*i+i) are referred to as rj and r2 (resp. rj and r^). The vertex between rj and r2 is referred to

as and the vertex between rj and is ^2- other words, e*i and e*+/ are the tangent vec

tors of and q2 respectively. For example, in Figure A.3, edges b and c of polygon B are the

two consecutive edges when XB^ touches the two obstacles before the reference point arrives

at the first turning point, rj and r2 are edges 7 and 8, and and are edges 5 and sp j. There

fore, finding qj and 92 takes time linear in the number of edges in C/ and C2.

The following algorithm finds the location of and its blocking case.

Algorithm Find_The_BlockjCase(e*i, e*i+j, qj, q2)

Begin

Draw a line, through qj and parallel to e*-;

Draw a line, I2, through q2 and parallel to e*-+/;

Find the intersection w of the two lines;

If q j w q 2 makes a right turn then

v*iX = w;

v* ;^^ is case 1;

Stop;

Else

www.manaraa.com

86

fi+i)\

(a) easel (b) case2 (c)case3

Figure A.5. Three cases for v*-

If there exists one segment, r,-, in C/ intersects with I 2 at y and e *• x r . < Q then

v*iX = y

v*ix is case 2;

Else

= the intersection of C2 and Ij;

v*ix is case 3;

End

Algorithm Find_The_Block_Case takes time linear in the number of edges in C/ and €2-

Since the objects are in general position, will not be coincident with the vertices in 5"/

or S2 when TiBg is on the fl-Voronoi diagram. In order to find the position of the reference

www.manaraa.com

87

point O (the first turning point t j) , for case 1 we need to find the ratio qiv*Q/e*i and v *oj:i2/

e * i + j . T h e l a r g e r r a t i o w i l l b e X ' , t h e s c a l i n g f a c t o r w h e n B a r r i v e s a t t j . T h e s c a l i n g f a c t o r X '

for case 2 is v*^q2/e*i^i and for case 3 it is The time for finding X' is only 0(1)

for each case. Once X' is found, the ray shooting from the first turning point to infinity in the

5-Voronoi diagram can be determined.

Since any vector in B is parallel to its corresponding vector in X B ^ , t j is the intersection

point of the line, passing through and parallel to 0 in B, with another line, passing

through the VV contact and parallel to its corresponding segment in B when the scaling factor

is X'. For example, in Figure A.6, tj is the intersection of I2, which is parallel to v* (9 in B, and

of I J, which passes dirough and is parallel to We use ray(a, d) to describe a

ray whose starting point is a and its direction is d. From Lemma A.2.1, we can see that when

the scaling factor is greater than X', the reference point ofXBg will lie on ray(/y, Thus,

the ray shooting from tj to infinity in the fl-Voronoi diagram is determined by ray(r/, v*^ti).

The procedure is described in more detail below.

Algorithm Find_The_Ray_in_B-Vor(v*i, e*-, qj, q2)

Output: the first turning point r/;

the ray shooting from tj to infinity;

Begin

Find_The_Block_Case(e*-, q j , q 2) ;

If (v*^ e blocking easel and q]V*i}/e*i < v*ixqye*i+j) or e blocking case 2) then

= v*ixqye*i+i-,

t j = Find_The_Tuming_Point(^2'

Retum(ry, ray(r/,

Else

www.manaraa.com

88

(i + 1)

Figure A.6. Find the first turning point

t/ = Find_The_Tuming_Point(<j/, v*-./, v*-^ v*);

Retum(ry, ray(f;, v*ixtj)y.

End

Algorithm Find_The_Tuming_Point(zi, Z2, Zj. Z4)

Begin

Draw a line If from Zj parallel to ;

Draw a line I2 from zj parallel to z^O ;

Retum(the intersection point of // and / 2);

www.manaraa.com

89

End

Since Algorithm Find_The _Block_Case is called in Algorithm Find_The_Ray_in_B-Vor,

Algorithm Find_The_Ray_in_B-Vor also takes time linear in the number of edges in C/ and

C2 to find the first turning point and the ray shooting from the first turning point to infinity.

A.3.2 Finding the interior turning points

Now we can slide B from // into the passage until we find another two consecutive edges

of B that touch Sj and $2 simultaneously. In Figure A.3, when B moves from the right-hand

side of spi to the right-hand side of sp2, XBg traces around Sj counterclockwise and traces

around S2 clockwise. Since XB^ touches S/ and S2 simultaneously, there are two contact

points: one between S/ and XBg and one between XBg and S2. The contact types of the moving

object and the obstacles can be VV, VE or EV. Since the objects are in general position, the

two contacts cannot both simultaneously be VV contacts, and there is no EE contact either.

The contact vertex and the contact edge will be called the tracing vertex and the tracing edge

respectively. Except for VV contacts, there are always two tracing vertices and two tracing

edges during the motion. Observation A.3.2 determines the tracing condition during the

motion.

Suppose there is a W contact when B slides around the boundary of polygon Si clockwise

(resp. counterclockwise). Let p be the contact point, and let pg be the vertex on B that coin

cides with p. Let p^ be the vertex on 5,- that coincides with p. Let ej^ be the edge in B just

ahead (resp. behind) of p and let Cj be the edge in 5,-just behind (resp. ahead) of p (see Fig.

A.7). We have the following observation.

www.manaraa.com

90

(a) B traces 5,- in clockwise (b) B traces 5,- in counterclockwise

Figure A.7. Tracing vertices and tracing edges

Observation A.3.2: If x ej is greater than zero (resp. less than zero), will trace cy, other

wise will trace Cf. after the W contact.

Since the turning point occurs when there is a VV contact, we need to determine if the tracing

vertex between B and Sj reaches some vertex first or the tracing vertex between B and S2

reaches some vertex first (see Fig. A.8). The following algorithm finds the two tracing verti

ces, two tracing edges, and the two vertices that the two tracing vertices will hit. In it, start(e)

(resp. end(e)) denotes the start (resp. end) point of vector e.

Algorithm Find_Tracing_Vertices_and_Edges(ej, 62, e^, e^)

Input: ef vector in B coming just behind the latest VV contact point with

62- vector in B coming just ahead of the latest VV contact point with S2',

e f . vector in 5/ coming just ahead of the latest VV contact with 5;

64. vector in S2 coming just behind the latest VV contact with B\

www.manaraa.com

91

Output: Trace_V[l]: tracing vertex between B and 5/;

T r a c e _ V [2] : t r a c i n g v e r t e x b e t w e e n B a n d S f ,

Trace_E[l]: tracing edge between B and 5/;

Trace_E[2]: tracing edge between B and S2',

Next_V[l]: the next vertex that Trace_V[l] will hit;

Next_V[2]: the next vertex that Trace_V[2] will hit;

Begin

I f (g j x e ^ > 0) then

Trace_V[l] = start(e^)\

Trace_E[l] = e/;

Next_V[l] = start(ejy.

Else

Trace_V[l] = end(ejy,

Trace_E[l] = ej.

Next_V[l] = end(ej)\

I f (e2Xe4>0) then

Trace_V[2] = start(e2)\

Trace_E[2] = 64,

Next_V[2] = start(e4y.

Else

Trace_V[2] = end(e4y,

Trace_E[2] = 62',

Next_V[2] = end(e2y

End

www.manaraa.com

92

XB

Next.VCn

Trace_EC2]

Next_VC2]

TrQce_V[2]

XB

Si

Figure A.8. One tracing vertex is in B, another one is in S

From Algorithm Find_Tracing_Vertices_and_Edges, we know that the next VV contact

occurs when either Trace_V[l] coincides with Next_V[l] or Trace_V[2] coincides with

Next_V[2]. It is now necessary to determine which one happens first.

If the two tracing vertices are all in B or all not in B, we can find the turning point through

the line connecting the two tracing vertices because the line has a fixed orientation during the

motion. Without loss of generality, suppose the two tracing vertices are all in B and

Trace_V[l] hits Next_V[l] first. At this time Trace_V[2] should still be on Trace_E[2]. Since

any vector in B is parallel to its corresponding vector in 7^^, we know that if we draw a line L,

passing through Next_V[l] and parallel to Trace_V[l]Trace_V[2], L should intersect with

Trace_E[2] and the intersection point will be the contact point between B and S2 when

Trace_V[l] coincides with Next_V[l]. If L does not intersect with Trace_E[2], that means

Trace_V[2] hits Next_V[2] first. After the intersection point and the VV contact are deter

mined, the turning point can be found by Algorithm Find_The_Tuming_Point.

The same strategy is applied when one tracing vertex is in B and another one is not in B. L

www.manaraa.com

93

will be the line passing through Trace_V[l] and parallel to Next_V[l]Trace_V[2]. If L inter

sects with Trace_E[2], Trace_V[l] will hit Next_V[l] first; otherwise Trace_V[2] will hit

Next_V[2] first (see Fig. A.8). The whole procedure for finding all intermediate turning points

takes 0{n) time.

A.3.3 Finding the last turning point

From Lenuna A.2.2, we know that when there are another two consecutive edges in B

touching Si and S2 or only one vertex of B blocks in the closed region again, we have found

the last turning point. We can therefore follow the same steps described in Section 3.1 to find

the last turning point and the ray shooting from it to infinity.

A.4 Conclusion

This Appendix gives an 0{n) algorithm to find the exact description for every turning

point in the j5-Voronoi diagram when there are two obstacles and one homothetic robot. Once

all of the turning points are found, and if all of the scaling factors are greater than one, we can

move the robot along the path without collision.

www.manaraa.com

94

REFERENCES

[1] C. Ahrikencheikh and A. A. Seireg, Optimized-Motion Planning, Theory and
Implementation, John Wiley & Sons, Inc, New York, 1994.

[2] C. Ahrikencheikh, A. A. Seireg, and B. Ravani, "Optimal and Conforming Motion of a
Point in a Constrained Plane," Transactions of the ASME, Journal of Mechanical
Design, pp. 474-479, 1994.

[3] H. Alt and C. K. Yap, "Algorithmic Aspects of Motion Planning: a Tutorial: Part 1,"
Algorithms Rev., Vol. 1, No. 2, pp. 43-60. 1990

[4] H. Alt and C. K. Yap, "Algorithmic Aspects of Motion Planning: a Tutorial: Part 2,"
Algorithms Rev., Vol. 1, No. 2, pp. 61-77. 1990.

[5] M. Barbehenn and S. Hutchinson, "Efficient Search and Hierarchical Motion PLanning
by Dynamically Maintaining Single-Source Shortest Paths Trees," IEEE Transactions
on Robotics and Automation, Vol. 11, No. 2, pp. 198-214, Apr. 1995.

[6] J. Barraquand and J-C Latombe, "On Nonholonomic Mobile Robots and Optimal
Maneuvering", Revue d'Intelligence Artificielle, Vol. 3, No. 2, pp. 77-103, 1989.

[7] J. Barraquand and J-C Latombe. "Nonholonomic Multibody Mobile Robots:
Controllability and Motion Planning in the Presence of Obstacles," Algorithmica, Vol.
10, pp. 121-155, 1993.

[8] J. Bentley and T. Ottmann, "Algorithms for Reporting and Counting Geometric
Intersections," IEEE Transactions on Computers, Vol. c-28. No. 9, pp. 643- 647, Sep.
1979.

[9] R. Brooks and T. Lozano-Perez, "A Subdivision Algorithm in Configuration Space for
Findpath with Rotation," IEEE Transactions on Systems, Man, and Cybernetics, Vol.
SMC-15, No. 2, Mar./ Apr., pp. 224-233, 1985.

[10] J. Canny, The Complexity of Robot Motion Planning, MIT Press, Cambridge,
Massachusetts, 1988.

[11] J. Canny, "Collision Detection for Moving Polyhedra," IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. PAMI-8, No. 2, pp. 200-209, March 1986.

[12] J. Canny and M. Lin, "An Opportunistic Global Path Planner," Proceedings of the
IEEE International Conference on Robotics and Automation, pp. 1554-1559, 1990.

[13] J. Canny, A. Rege, and J. Reif, "An Exact Algorithm for Kinodynamic Planning in the

www.manaraa.com

95

Plane," Proceeding of the ACM Symp. on Computational Geometry, pp. 271-280, 1990.

[14] L. P. Chew and K. Kedem, "A Convex Polygon Among Polygonal Obstacles:
Placement and High-Clearance Motion," Computational Geometry: Theory and
Applications, Vol. 3, pp. 59-89, 1993.

[15] J. Chuang and N. Ahuja, "Path Planning Using the Newtonian Potential," Proceedings
of the IEEE International Conference on Robotics and Automation, Vol. 1, 1991.

[16] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, MIT
Press, Cambridge, Massachusetts, 1990.

[17] L. Dubins, "On Curve of Minimal Length with a Constraint on Average Curvature, and
with Prescribed Initial and Terminal Positions and Tangents," Am. J. Math. Vol. 79,
pp. 697-516, 1957.

[18] R. Eamshaw, Theoretical Foundations of Computer Graphics and CAD, NATO ASI
Series, Springer-Verlag, New York, 1987.

[19] M. Erdmann and T. Lozano-Perez, "On Multiple Moving Objects," Algorithmica, Vol.
2, pp. 477-521, 1987.

[20] B. Faveijon, "Obstacle Avoidance Using an Octree in The Configuration Space of a
Manipulator," IEEE Int. Conf Robot, and Automat., Atlanta, pp. 504-512, 1984.

[21] B. Faveijon, "Object Level Programming of Industrial Robot," IEEE Int. Conf Robot,
and Automat., 1406-1412, 1986.

[22] S. Fortune and G. Wilfong, "Planning Constrained Motion," Proc. ACM Symp. Theory
ofCompt., pp. 445-459, 1988.

[23] T. Fraichard, "Dynamic Trajectory Planning with Dynamic Constraints a 'a State-Time
Space' Approach," Proceedings of the lEEE/RSJ International Conference on
Intelligent Robots and Systems, IdiT^dSi, pp. 1393-1400, 1993

[24] T. Fraichard and C. Laugier, "Path-Velocity Decomposition Revisited and Applied to
Dynamic Trajectory Planning," IEEE Int. Conf. Robot, and Automat., Vol. 2, pp. 40-45,
1993.

[25] W. R. Franklin, V. Akman, and C. Verrilli, "Voronoi Diagrams with Barriers and on
Polyhedra for Minimal Path Planning, " The Visual Computer, Vol. 1, pp. 133-150,
1985.

[26] L. Guibas, L. Ramshaw, and J. Stolfi, "A Kinetic Framework for Computational
Geometry," IEEE Symp. on FOCS, pp. 100-111, 1983.

www.manaraa.com

96

[27] V. Hayward, "Fast Collision Detection Scheme by Recursive Decomposition of a
Manipular Workspace," IEEE Int. Conf. Robot, and Automat., pp. 1044-1049, 1986.

[28] M. Held, J. BGosowski, and J. Mitchell, "Evaluation of Collision Detection Methods
for Virtual Reality Fly-Throughs," Department of Applied Mathematics and Statistics,
State University of New York, Stony Brook.

[29] H. Hirukawa and S. Kitamura, "Collision Avoidance Method for Robot Manipulators
Based on the Safety First Algorithm and the Potential Function," Advanced Robotics,
Vol. 4, No. 1, 1990.

[30] J. E. Hopcroft, J. T. Schwartz, and M. Sharir "On the Complexity of Motion Planning
for Multiple Independent Object; PSPACE-Hardness of the "Warehouseman's
Problem," The International Journal of Robotics Research, Vol. 3, No. 4, pp. 76-88,
1984.

[31] M. Houle, "Computing the Width of a Set," Proceedings of the ACM Symp. on
Computational Geometry, pp. 1-7, 1985.

[32] Y. K. Hwang and N. Ahuja, "A Potential Field Approach to Path Planning," IEEE
Transactions on Robotics and Automation, Vol. 8, pp. 23-32, Feb. 1992.

[33] Y. Kanayama and B. I. Hartmen, "Smooth Local Path Planning for Autonomous
Vehicles," Technical Report of the Department of Computer Science at University of
California at Santa Barbara, TRCS88-15, June 1988.

[34] K. Kedem, R. Livne, J. Pach, and M. Sharir, "On the Union of Jordan Regions and
Collision-Free Translational Motion Amidst Polygonal Obstacles," Discrete &
Computational Geometry, pp. 59-71, 1986.

[35] K. Kedem and M. Sharir, "An Efficient Algorithm for Planning Collision-free
Translational Motion of a Convex Polygonal Object in 2-dimensional Space Amidst
Polygonal Obstacles," Proceedings of the ACM Symposium on Computational
Geometry, pp. 75- 80, 1985.

[36] K. Kedem and M. Sharir, "An Efficient Motion-Planning Algorithm for a Convex
Polygonal Object in Two-Dimensional Polygonal Space," Discrete & Computational
Geometry, Vol. 5, pp. 43-75, 1990.

[37] O. Khatib, "Real-Time Obstacle Avoidance for Manipulators and Mobile Robot,"
International Journal of Robotics Research, Vol. 5, No. 1, pp. 90-98, 1986.

[38] D. Kirkpatrick, "Efficient Computation of Continuous Skeletons," Proceedings of the
20th Symp. on Foundations of Computer Science, pp. 18-27, 1979.

www.manaraa.com

97

[39] D. Kirkpatrick and J.Snoeyink, "Tentative Prune-and-Search for Computing Vertices,"
Proceedings of the 9th Annual Symp. on Computational Geometry, pp. 133-142, 1993.

[40] M. Kohler and M. Spreng, "Fast Computation of the C-Space of Convex 2D Algebraic
Objects," The IntemationalJoumal of Robotics Research, Vol. 14, No. 6, pp. 590-608,
December 1995.

[41] K. Kondo, "Collision Avoidance by Free Space Enumeration Using Multiple Search
Strategies," Advanced Robotics, Vol. 5, No. 4, 1991.

[42] K. Kondo and K. Ohtomi, "Motion Planning in Plant CAD Systems," ASME Advances
in Design Automation, Vol. DE-32, No. 2, 1991.

[43] T. S. Ku and B. Ravani, "Model Based Rigid Body Guidance in Presence of Non-
Convex Geometric Constraints," ASME Advances in Design Automation, DE-Vol. 14,
pp. 67-79, 1988.

[44] J-C Latombe, Robot Motion Planning, Kluweer Academic Publishers, Boston, 1991.

[45] J-C Latombe, Robot Algorithms, Algorithmic Foundations of Robotics, K.Goldberg et
al. (eds), AK Peters, Wellesey, 1995.

[46] J-P Laumond, "Finding Collision-Free Smooth Trajectories for a Non-Holonomic
Mobile Robot," Proc. Tenth International Joint Conference on Artificial Intelligence,
Milano, Italy, pp. 1120-1123,1987.

[47] J-P. Laumond, P. E. Jacobs, M. Taix, and R. M. Murray, "A Motion Planner for
Nonholonomic Mobile Robots," IEEE Transactions on Robotics and Automation, Vol.
10, No. 5, pp. 577- 593, October 1994.

[48] J-P. Laumond, T. Simeon, R. Chatila, and G. Giralt, "Trajectory Planning and Motion
Control for Mobile Robot," Geometry and Robotics, J.D. Boissonnat and J. P.
Laumond, Eds, Lecture Notes in Computer Science, Springer- Verlag, New York, Vol.
391, pp. 133-149, 1989.

[49] J-P Laumond and P. Soueres, "Metric induced by the Shortest Paths for a Car-Like
Mobile Robot," lEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Yokoama, pp.
1299-1303, 1993.

[50] D. T. Lee and R. L. Drysdale, "Generalization of Voronoi Diagrams in the Plane,"
SIAM J. Comput., Vol. 10, No. 1, pp. 73-87, Feb. 1981.

[51] J. Lenarcic and B. Ravani, Advances in Robot Kinematics and Computational
Geometry, Kluwer Academic Publishers, Dordrecht, 1994.

www.manaraa.com

98

[52] D. Leven and M. Sharir, "Planning a Purely Translational Motion for a Convex Object
in Two-Dimensional Space Using Generalized Voronoi Diagrams", Discrete &
Computational Geometry, Vol.2, pp. 9-31, 1987.

[53] D. Leven and M. Sharir, "An Efficient and Simple Motion Planning Algorithm for a
Ladder Amidst Polygonal Barriers," Journal of Algorihtms, Vol. 8, pp. 192-215, 1987.

[54] T. Lozano-Perez, "Spatial Planning: A Configuration Space Approach," IEEE
Transactions On Computer, Vol. c-32. No. 2, 1983.

[55] A. A. Maciejewski and C. A. Klein, "Obstacle Avoidance for Kinematically Redundant
Manipulators in Dynamically Varying Environments," International Journal of
Robotics Research, Vol. 4, No. 3, 1985.

[56] H. Martinez-Alfaro, Collision-Free Path Planning for Robots Using B-Splines and
Simulated Annealing, Ph.D dissertation, Iowa State University, Ames, 1993.

[57] B. Mirtich and J. Canny, "Using Skeletons for Nonholonomic Path Planning Among
Obstacles," Proc. of the IEEE International Conference on Robotics and Automation,
pp. 2533- 2540, 1992.

[58] D. Mount, "Intersection Detection and Separators for Simple Polygons," 8th Annual
Computational Geometry, pp. 303-311, 1992.

[59] P. Moutarlier, B. Mirtich, and J.Canny, "Shortest Paths for a Car-Like Robot to
Manifolds in Configuration Space", The International Journal of Robotics Research,
Vol.15, No. 1, pp. 36-60, February, 1996.

[60] J. R. Munkres, Topolygy: A First Course, Prentice-Hall, Englewood Cliffs, NJ, 1975.

[61] J. Nievergelt and F. P. Preparata, "Plane-sweep Algorithms for Intersecting Geometric
Figures," Comm. ACM, Vol. 25, pp.739- 747, 1982.

[62] C. O'Dunlaing, M. Sharir, and C.K. Yap, "Retraction: a New Approach to Motion-
Planning," Theory Comput., pp. 207-220, 1983.

[63] C. O'Dunlaing, M. Sharir, and C. Yap, "Generalized Voronoi Diagrams for a Ladder: II
Efficient Construction of the Diagram," Algorithmica, Vol.2, pp. 27-59, 1987.

[64] C. O'Dunlaing and C.K. Yap, "A "Retraction" method for planning the motion of a
disk," J. of Algorithms, Vol. 6, pp. 104-111, 1985.

[65] M. Okutomi and M. Mori, "Decision of Robot Movement by Means of a Potential
Field," JRSJ Advanced Robotics, Vol. 1, No. 2, pp. 131-141, 1986.

www.manaraa.com

99

[66] T. Ottman, P. Widmayer, and D. Wood, "A Fast Algorithm for Boolean Mask
Operations," Computer Vision, Graphics and Image Processing, Vol. 30, pp. 249- 268,
1985.

[67] M. H. Overmars and P. Svestka, "A Probabilistic Learning Approach to Motion
Planning," Technical Report UU-CS-1994-03, Department of Computer Science,
Utrecht University.

[68] F. P. Preparata and M. I. Shamos, Computational Geometry, an Introduction, Springer-
Verlag, New York, 1985.

[69] F. P. Preparata, Advances in Computing Research, Computational Geometry, Vol 1,
1983.

[70] A. Pruski and S. Rohmer, "Multivalue Coding: Application to Autonomous Robot
Planning with Rotations," Proceedings of the IEEE International Conference on
Robotics and Automation, Vol. 1, pp. 694-699, 1991.

[71] N. S. V. Rao, N. Stoltzfus, and S. S. Iyengar, " A "Retraction" Method for Learned
Navigation in Unknown Terrains for a Circular Robot", IEEE Transactions on
Robotics and Automation, Vol. 7, No. 5, pp. 699-707, Oct. 1991.

[72] J. A. Reeds and L. A. Shepp, " Optimal Paths for a Car that Goes both Forwards and
Backwards," Pacific Journal of Mathematics, Vol. 145, No. 2, pp. 367-393, 1990.

[73] J. T. Schwartz and M. Sharir, "On The Piano Movers' Problem: I. The Special Case of
a Rigid Polygonal Body Moving Amidst Polygonal Barriers," Commun. Pure Appl.
Math., Vol. 36, pp. 345-398, 1983.

[74] J. T. Schwartz and M. Sharir, "On The Piano Movers' Problem: H. General Techniques
for Computing Topological Properties of Real Algebraic Manifolds," Adv. Appl. Math.,
Vol. 4, pp. 298-351, 1983.

[75] J. T. Schwartz and M. Sharir, "Algorithmic Motion Planning in Robotics", Handbook
of Theoretical Computer Science, pp. 393-430, 1990.

[76] J. T. Schwartz, M. Sharir, and J. E. Hopcroft, Planning, Geometry, and Complexity of
Robot Motion, Ablex Publishing, Norwood, NJ, 1987.

[77] J.T. Schwartz and C. K. Yap, Advances in Robotics, Algorithmic and Geometric
Aspects of Robots, Lawrence Erlbaum Assoc. Publishers, Hillsdale, NJ, 1987.

[78] M. Sharir, "Efficient Algorithms for Planning Purely Translational Collision-free
Motion in Two and Three Dimensions", Proc. IEEE Symp. on Robotics and
Automation, pp.1326-1331, 1987.

www.manaraa.com

100

[79] M. Sharif, "Algorithmic Motion Planning in Robotics," IEEE Computer, pp. 9-20,
1989.

[80] M. Sharif and S Toledo, "Extremal Polygon Containment Problems," Computational
Geometry, Theory and Application, Vol. 4, pp. 99-118, 1994.

[81] K. G. Shin and N. D. Mckay, "Minimum-Time Control of Robot Manipulators with
Geometric Path Constrains," IEEE Transactions on Automatic Control, Vol. AC-30,
No. 6, pp. 531-541, June 1985.

[82] T. Simeon, "Planning Collision Free Trajectories by a Configuration Space Approach,"
Geometry and Robotics, J.D. Boissonnat and J. P. Laumond, Eds, Lecture Notes in
Computer Science, Springer Verlag, New York, Vol. 391, pp. 116-132, 1989.

[83] P. Soueres, J-Y. Fourquet, and J-P. Laumond, "Region of Accessibility for a Car-Like
Robot," Proceedings of the lEEE/RSJ International Conference on Intelligent Robots
and Systems, Yokohama, Japan, pp. 1304-1309, 1993.

[84] P. Soueres and J.P. Laumond, "Shortest Path Synthesis for a Car-like Robot" in IEEE
Transaction on Automatic Control, Vol. 41, No. 5, pp. 672-688, May 1996.

[85] M. Spong, F. Lewis, and C. Abdallah, Robot Control, Dynamics, Motion Planning, and
Analysis, IEEE Press, NJ, 1993.

[86] A. Stappen and M. Overmars, "Motion Planning amidst Fat Obstacles," Proceedings of
the 10th annual Symposium on Computational Geometry, pp. 31-40, 1994.

[87] A. Stewart, "Local Robustness and its Applications to Polyhedral Intersection,"
International Journal of Computational Geometry & Applications, Vol. 4, No. 1, pp.
87-118, 1994.

[88] P. Svestka and M. H. Overmars, "Motion Planning for Car-Like Robots Using a
Probabilistic Learning Approach," UU-CS-1994-33, Department of Computer Science,
Utrecht University, Netherlands.

[89] O. Takahashi and R.J. Schilling, "Motion Planning in a Plane Using Generalized
Voronoi Diagrams", IEEE Transactions on Robotics and Automation, Vol. 5, No. 2, pp.
143-150, Apr. 1989.

[90] S. Toledo, "Extremal Polygon Containment Problems," Proc. of the ACM symp. on
Computational Geometry, 176-185, 1991.

[91] P. Toumassound and 0. Jehl, "Motion Planning for a Mobile Robot with a Kinematic
Constraint," Proc. IEEE International Conference on Robotics and Automation, pp.
1785-1790, 1988.

www.manaraa.com

101

[92] P. Tournassound, "Motion Planning for a Mobile Robot with a Kinematic Constraint,"
Geometry and Robotics, J.D. Boissonnat and J. P. Laumond, Eds, Lecture Notes in
Computer Science, Springer Verlag, New York, Vol. 391, pp. 150-171, 1989.

[93] M. Vendittelli and J.P. Laumond, "Visible positions for a car-like robot amidst
obstacles", 2nd Workshop on Algorithmic Foundations of Robotics, WAFR'96,
Toulouse, July 1996.

[94] J. M. Vleugels, J. N. Kok, and M. H. Overmars, "Motion Planning Using a Colored
Kohonen Network," Utrecht University, Department of Computer Science,
Netherlands, 1993.

[95] J. M. Vleugels and M. H. Overmars, "Approximating Generalized Voronoi Diagrams
in Any Dimension," UU-CS-1995-14, Utrecht University, Department of Computer
Science, Netherlands, 1995.

[96] C. Wang, "Collision Dection of a Moving Polygon in the Presence of Polygonal
Obstacles in the Plane," IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 10, No. 6, pp. 571-580, June 1994.

[97] C. W. Warren, "Global Path Planning Using Artificial Potential Field," IEEE Journal of
Robotics and Automation, pp. 316-321, 1989.

[98] G. T. Wilfong, "Motion Planning for an Autonomous Vehicle," Proc. IEEE
International Conference on Robotics and Automation, pp. 529-533, 1988.

[99] C. K. Yap, "Algorithmic Motion Planning," Advances in Robotics, Vol. 1: Algorithmic
and Geometric Aspects, J. T. Schwartz and C. K. Yap, Eds. Lawrence Erlbaum Assoc.,
Hillsdale, NJ, 1987.

[100]C.K. Yap, "How to Move a Chair Through a Door," IEEE J. Robotics Automat., Vol.
RA-3, No. 3, pp. 172-181, June 1987.

[101]C. K Yap, "An 0(n log n) Algorithm for the Voronoi Diagram of a Set of Simple Curve
Segments," Discrete & Computational Geometry, Vol. 2, pp. 365-393, 1987.

[102]D. Zhu and J-C Latombe, "New Heuristic Algorithms for Efficient Hierarchical Path
Planning," IEEE Transactions on Robotics and Automation, Vol. 7, No. 1, pp. 9-20,
Feb. 1991.

	1997
	Collision-free path planning
	Shiang-Fong Chen
	Recommended Citation

	

